This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Heavy rainfall in Hawaii

McIDAS images of GOES-15 10.7 µm IR channel data (above; click image to play animation) showed the cold cloud tops (some -60º C and colder, red color enhancement) associated with numerous large thunderstorms that moved across the northern Hawaiian Islands of Kauai and Oahu during the 04 March – 06... Read More

GOES-15 10.7 µm IR channel images (click image to play animation)

GOES-15 10.7 µm IR channel images (click image to play animation)

McIDAS images of GOES-15 10.7 µm IR channel data (above; click image to play animation) showed the cold cloud tops (some -60º C and colder, red color enhancement) associated with numerous large thunderstorms that moved across the northern Hawaiian Islands of Kauai and Oahu during the 04 March – 06 March 2012 period. Storm total rainfall amounts were as high as 35.97 inches at Hanalei on Kauai, and 15.64 inches at Punaluu Stream on Oahu. Lihue on Kauai set a new daily record rainfall amount with 8.64 inches falling on 05 March.

As one of the largest thunderstorm complexes was approaching the island of Kauai from the southwest around 03 UTC on 06 March (5 pm local time on 05 March), a comparison of a 1-km resolution NOAA-15 AVHRR 10.8 µm IR channel image to the corresponding 4-km resolution GOES-15 10.7 µm IR channel image (below) demonstrated the advantage of higher spatial resolution for identifying the location of colder cloud top IR brightness temperatures associated with convective overshooting tops. Southwest of Kauai the coldest IR temperature on the AVHRR image was -70º C, compared to -62º C on the GOES-15 image.

NOAA-15 AVHRR 10.8 µm IR image + GOES-15 10.7 µm IR image

NOAA-15 AVHRR 10.8 µm IR image + GOES-15 10.7 µm IR image

AWIPS images of the MIMIC Total Precipitable Water product with overlays of surface analyses (below; longer animation) showed that deep moisture was pooling along a stationary frontal boundary / wind shear axis that was situated between the islands of Kauai and Oahu. (Note to NWS forecast offices: MIMIC TPW is available in AWIPS, via LDM subscription)

MIMIC Total Precipitable Water product + Surface analyses

MIMIC Total Precipitable Water product + Surface analyses

GOES-15 6.5 µm water vapor channel images with water vapor Atmospheric Motion Vector (AMV) winds from the CIMSS Tropical Cyclones site (above) showed that a well-defined trough of low pressure was located to the northwest of the Hawaiian Islands during the 05 March – 06 March period.

GOES-15 6.5 µm water vapor images + water vapor atmospheric motion vector winds

GOES-15 6.5 µm water vapor images + water vapor atmospheric motion vector winds

Upper-tropospheric divergence derived from these satellite AMVs (below) revealed a trend of increasing divergence aloft over the northern Hawaiian Islands as the trough approached.

GOES-15 6.5 µm water vapor images + satellite wind derived upper-level divergence

GOES-15 6.5 µm water vapor images + satellite wind derived upper-level divergence

Juxtaposed beneath the strong upper-tropospheric divergence was strong lower-tropospheric convergence in the vicinity of the stationary front / wind shear axis, as seen in GOES-15 10.7 µm IR images with contours of IR satellite wind derived 850-925 hPa convergence (below). This created a favorable environment for upward vertical motion, with plenty of deep moisture to fuel the development of the strong thunderstorms.

GOES-15 10.7 µm IR images + satellite wind derived lower-level convergence

GOES-15 10.7 µm IR images + satellite wind derived lower-level convergence

View only this post Read Less

Tehuano wind event following the 02 March 2012 severe weather outbreak

The powerful mid-latitude cyclone that was responsible for the widespread outbreak of severe weather across parts of the eastern US on 02 March 2012 spawned a southward surge of cold air (OPC surface analyses) that traversed the Gulf of Mexico, crossed the mountainous terrain of far southern Mexico,... Read More

METAR surface reports + tropical surface analyses + ASCAT scatterometer winds

METAR surface reports + tropical surface analyses + ASCAT scatterometer winds

The powerful mid-latitude cyclone that was responsible for the widespread outbreak of severe weather across parts of the eastern US on 02 March 2012 spawned a southward surge of cold air (OPC surface analyses) that traversed the Gulf of Mexico, crossed the mountainous terrain of far southern Mexico, and emerged across the Pacific Ocean as a strong gap wind event known as a Tehuano wind. AWIPS images showing METAR surface reports, Tropical surface analyses, and a pass of ASCAT scatterometer surface winds (above) showed that there was blowing sand reported at Veracruz (station identifier MMVR), with wind gusts to 45 knos at Minatitlan (station identifier MMMT) and 35 knots at Ixtepec (station identifier MMIT).

McIDAS images of GOES-13 0.63 µm visible channel data from 04 March 2012 (below; click image to play animation) showed the cloud arc that marked the leading edge of the Tehuano wind, and also showed the hazy signature of blowing dust that was being lofted southward across the Pacific coast and over the waters of the Gulf of Tehuantepec (hence the name “Tehuantepecer“ given to this type of strong wind event).

GOES-13 0.63 µm visible channel images (click image to play animation)

GOES-13 0.63 µm visible channel images (click image to play animation)

A similar Tehuano wind event was seen on 08 March 2008.

View only this post Read Less

02 March 2012 Severe Weather Outbreak

One of the largest severe weather outbreaks on record for the month of March occurred from the Ohio River Valley to the Gulf Coast states on 02 March 2012. This outbreak produced dozens of tornadoes, more than 400 hail reports (as large as... Read More

POES AVHRR 10.8 µm IR image + total cumulative hail, wind, and tornado reports

POES AVHRR 10.8 µm IR image + total cumulative hail, wind, and tornado reports

One of the largest severe weather outbreaks on record for the month of March occurred from the Ohio River Valley to the Gulf Coast states on 02 March 2012. This outbreak produced dozens of tornadoes, more than 400 hail reports (as large as 4.25 inches in diameter in Kentucky), and over 200 reports of severe damaging winds (SPC storm reports) — and was responsible for more than 30 fatalities. Focusing on one of the hardest-hit regions (from southern Indiana into Kentucky), a composite of the total cumulative SPC hail, severe damaging wind gust, and tornado reports are overlaid on an AWIPS image of 1-km resolution POES AVHRR 10.8 µm IR data (above).

4-km resolution GOES-13 10.7 µm IR images with overlays of corresponding SPC storm reports (below; click image to play animation) showed that during the 16:25 to 23:45 UTC period a number of cold overshooting cloud tops (IR brightness temperatures as cold as -70º C, darker black color enhancement, at 19:45 UTC), enhanced-V signatures, and cold-warm thermal couplets could be seen. For the large supercell thunderstorm that produced the tornado/tornadoes that did EF4 damage in Henryville in far southern Indiana after about 20:11 UTC, we can see that it exhibited fairly well-defined enhanced-V and/or cold/warm thermal couplet cloud top sinatures as it moved eastward across southern Indiana during the hour or two leading up to the tornadoes. Henryville is located approximately halfway between Seymour, Indiana (station identifier KSER) and Louisville, Kentucky (station identifier KSDF).

GOES-13 10.7 µm IR images + Severe storm reports (click image to play animation)

GOES-13 10.7 µm IR images + Severe storm reports (click image to play animation)

About an hour prior to the Henryville tornado, a comparison of 1-km resolution MODIS 0.65 µm visible channel and 11.0 µm IR channel images at 19:10 UTC (below) displayed a large thunderstorm over far southern Indiana, with overshooting top shadows seen on the visible image and an enhanced-V with a distinct cold/warm thermal couplet cloud top signature on the IR image.

MODIS 0.65 µm visible chaneel + 11.0 µm IR channel images

MODIS 0.65 µm visible chaneel + 11.0 µm IR channel images

In a comparison of the 19:10 UTC 1-km resolution MODIS 11.0 µm IR image with the correspondng 4-km resolution GOES-13 10.7 µm IR image (below), the advantage of improved spatial resolution is immediately obvious in terms of being able to identify storm-top severe storm signatures such as the enhanced-V or the cold/warm thermal couplet (Note: the spatial resolution of IR imagery on the next-generation ABI instrument on GOES-R will be 2 km). The coldest cloud-top IR brightness temperature on the MODIS image was -76º C, compared to -67º C on the GOES-13 image. Also evident is the northwestward “parallax shift” on the GOES-13 IR image, due to the large viewing angle from that particular geostationary satellite located over the Equator at 75º West longitude; a more accurate placement of the storm top features is seen using imagery from polar-orbiting satellites that fly more directly overhead.

1-km MODIS 11.0 µm IR image + 4-km GOES-13 10.7 µm IR image

1-km MODIS 11.0 µm IR image + 4-km GOES-13 10.7 µm IR image

A similar comparison between the 19:44 UTC 1-km resolution POES AVHRR 10.8 µm IR image with the corresponding 4-km resolution GOES-13 10.7 µm IR image (below) again demonstrated the easier identification of important storm-top signatures with improved spatial resolution data. These images were about 20-30 minutes before the Henryville and Marysville tornadoes in far southern Indiana.

1-km POES AVHRR 10.8 µm IR image + 4-km GOES-13 10.7 µm IR image

1-km POES AVHRR 10.8 µm IR image + 4-km GOES-13 10.7 µm IR image

Many of the supercell thunderstorms exhibited unusally fast forward motion speeds (as fast as 70-80 mph), due to the approach of a strong 140-knot core upper-level jet streak. A 1-km resolution MODIS 6.7 µm water vapor channel image with an overlay of NAM maximum wind speeds is shown below — strong divergence aloft within the left exit region of this upper-level jet streak helped to promote an environment supportive of strong vertical ascent.

MODIS 6.7 µm water vapor channel image + NAM maximum wind speeds

MODIS 6.7 µm water vapor channel image + NAM maximum wind speeds

From a larger synoptic-scale point of view, 10-km resolution GOES-13 sounder Lifted Index (LI) derived product imagery (below; click image to play animation) did begin to show a trend of destabilization early in the day within the warm sector of the mid-latitude cyclone, before extensive cloud cover prevented the subsequent retrieval of GOES sounder-based products.

GOES-13 sounder Lifted Index derived product imagery (click image to play animation)

GOES-13 sounder Lifted Index derived product imagery (click image to play animation)

Blended Total Precipitable Water product (click image to play animation)

Blended Total Precipitable Water product (click image to play animation)

In terms of moisture, the Blended Total Precipitable Water product (above; click image to play animation) showed that TPW values in excess of 25 mm (or 1.0 inch) were being drawn northward within the warm sector of the cyclone. These TPW values were near or even in excess of 200 percent above normal for many areas for this early in the season (below; click image to play animation).

Percent of Normal Blended Total Precipitable Water (click image to play animation)

Percent of Normal Blended Total Precipitable Water (click image to play animation)

———————————- 10 March Update ——————————

Before (01 March) and after (10 March) MODIS true-color RGB images

Before (01 March) and after (10 March) MODIS true-color RGB images

A comparison of before (01 March 2012) and after (10 March 2012) 250-meter resolution MODIS true-color Red/Green/Blue (RGB) images from the SSEC MODIS Today site (above) revealed the southwest-to-northeast oriented tornado damage path from the Henryville, Indiana EF4 tornado.

View only this post Read Less

Leap Day 2012 Severe Weather

Severe thunderstorms during the early morning hours of February 29th, 2012 produced several tornadoes over Missouri, including one near Branson, and one near Lebanon. (Annotated SPC storm report map here, originally from here) The GOES-13 enhanced infrared images from 0615 UTC and from 0632 UTC... Read More

Severe thunderstorms during the early morning hours of February 29th, 2012 produced several tornadoes over Missouri, including one near Branson, and one near Lebanon. (Annotated SPC storm report map here, originally from here) The GOES-13 enhanced infrared images from 0615 UTC and from 0632 UTC show a cold cloud top (brightness temperatures near 210 K or -63º C) passing just north of Lebanon (indicated by the blue square in the imagery). Similarly, GOES-13 enhanced infrared images from 0702 UTC and 0715 UTC show cold cloud tops (brightness temperatures around 212 K or -61º C) passing just north of Branson (whose position is also indicated by a blue square). (Click Here for a loop from 0545 UTC to 0845 UTC).

GOES-13 Sounder DPI LI

GOES-13 Sounder DPI LI

Satellite data gave numerous indications that severe weather was possible at these locations. For example, the Sounder-derived Derived Product Imagery (DPI) Lifted Index at 0400 UTC and at 0700 UTC (See above for the toggle between the images) shows a tongue of instability — LIs close to -4 at 0400 UTC and dropping by 0700 UTC — progressing eastward across Missouri.

UW CIMSS NearCast Product Valid at 0700 UTC 29 February 2012 (click image to play animation)

UW CIMSS NearCast Product Valid at 0700 UTC 29 February 2012

In addition, the UW CIMSS NearCasting product, above, which product uses a Lagrangian Model to move three-dimensional sounder information into the future (thereby showing where convective instability will develop) suggested that strong instability would help sustain the development of any thunderstorms over Southwestern Missouri. Each of the forecasts in the linked-to loop above focus the instability over southwest Missouri near Branson. The NearCast product indicates where the greatest instability will be in the near future and therefore serves to enhance situational awareness in a region.

___________________________________________________________________________________

As the well-organized squall line ahead of the advancing cold front continued eastward, a tornado which produced the first documented EF4 damage of 2012 moved through the southern part of Harrisburg, Illinois around 10:56 UTC (4:56 am local time). This tornado was also responsible for 6 deaths (NWS Paducah KY Public Information Statement). See the WeatherMatrix Blog for a detailed radar-based discussion of this event.

An AWIPS image of 1-km resolution POES AVHRR 10.8 µm IR data at 11:03 UTC (shortly after the tornado moved through Harrisburg IL) with overlays of severe storm reports (below) shows that the Harrisburg supercell produced hail up to 2.50 inches in diameter and a number of damaging wind reports between 09:41 UTC and 10:56 UTC as it moved northeastward from far eastern Missouri across southern Illinois.

POES AVHRR 10.8 µm IR image + Hail, Severe Wind Gust, and Tornado reports

POES AVHRR 10.8 µm IR image + Hail, Severe Wind Gust, and Tornado reports

As seen in the 1-km resolution POES AVHRR image comparison below, along the pre-frontal squall line the 10.8 µm cloud top IR brightness temperatures were as cold as -73º C (darker black color enhancement in the IR image), cloud top heights were as high as 12 km (darker green on the Cloud Top Height product), and a large area of cloud tops was designated as “Overshooting” the tropopause (violet on the Cloud Type product).

POES AVHRR 10.8 µm IR image + Cloud Top Height, and Cloud Type products

POES AVHRR 10.8 µm IR image + Cloud Top Height, and Cloud Type products

A sequence of 4-km resolution GOES-13 10.7 µm IR images with an overlay of Automated Overshooting Tops Detection (below) showed an overshooting top associated with the supercell at 10.15 UTC over southern Illinois — nearly 45 minutes before the tornado moved through Harrisburg (station identifier KHSB).

GOES-13 10.7 µm IR images + Overshooting Top Detection

GOES-13 10.7 µm IR images + Overshooting Top Detection

View only this post Read Less