This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Remnants of Post-Tropical Cyclone Florence north of Bermuda

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images and their Derived Motion Winds (above) revealed the partially exposed low-level circulation associated with the indirect remnants of Post-Tropical Cyclone Florence north of Bermuda on 20 September 2018 (surface analyses). The strongest Visible winds — calculated by tracking cloud features having a height assignment at... Read More

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with plots of Derived Motions Winds [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images and their Derived Motion Winds (above) revealed the partially exposed low-level circulation associated with the indirect remnants of Post-Tropical Cyclone Florence north of Bermuda on 20 September 2018 (surface analyses). The strongest Visible winds — calculated by tracking cloud features having a height assignment at or below the 700 hPa pressure level — located west and northwest of the circulation center were generally in the 35-40 knot range during the later part of the day, with one target being tacked at 56 knots (though this seemed to be an anomalous outlier).

However, ASCAT scatterometer data from an overpass of the Metop-A satellite at 1335 UTC (below) only sensed surface winds speeds (deduced from ocean surface roughness) as high as 25 knots around the center of the circulation.

Metop-A ASCAT surface scatterometer winds [click to enlarge]

Metop-A ASCAT surface scatterometer winds [click to enlarge]

Using a GOES-16 satellite-winds-derived 850 hPa Relative Vorticity product from the CIMSS Tropical Cyclones site (below), motion of the lower-tropospheric vorticity associated with Florence could be followed from landfall on 14 September to the current position north of Bermuda 6 days later. While the bulk of the vorticity became elongated (as Post-Tropical Cyclone Florence transformed into more of a weak baroclinic frontal wave over the Northeast US on 18 September: surface analyses), a small portion of the remnant 850 hPa vorticity became separated and then moved southeastward across the Atlantic.

GOES-16 Relative Vorticity product [click to play animation | MP4]

GOES-16 Relative Vorticity product [click to play animation | MP4]

Sea Surface Temperature and Ocean Heat Content [click to enlarge]

Sea Surface Temperature and Ocean Heat Content [click to enlarge]

A tropical Invest (98L) was initiated by the National Hurricane Center to gather additional data and more closely monitor this feature. Although the circulation had been moving over the Gulf Stream where warm Sea Surface Temperature and modest Ocean Heat Content existed (above), deep-layer wind shear was increasing over the area due to the approach of a branch of the polar jet stream (below).

GOES-16 Mid-level Water Vapor (6.9 µm) images, with deep-layer wind shear analyzed at 22 UTC [click to enlarge]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with deep-layer wind shear analyzed at 22 UTC [click to enlarge]

Although deep convection was displaced to the southeast of the low-level circulation center, the GOES-16 Total Precipitable Water derived product (below) showed that ample moisture remained in place farther to the northwest over the Invest 98L.

GOES-16 Low-level Water Vapor (7.3 µm) images + Total Precipitable Water derived product [click to play MP4 animation]

GOES-16 Low-level Water Vapor (7.3 µm) images + Total Precipitable Water derived product [click to play MP4 animation]

===== 21/22 September Update =====

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images (above) showed the cyclonic spin of Invest 98L as it moved south of Bermuda on 21 September.

On 22 September, the circulation continued to drift a bit farther south of Bermuda (below), a few hundred miles north of an area of Saharan Air Layer dust (discussed here) — note the hazy signature of the dust on Visible imagery, along with elevated Aerosol Optical Depth values of 0.6 to 0.7 having a good coverage of medium to high confidence Dust Detection.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, along with Aerosol Optical Depth and Dust Detection products [click to play MP4 animation]

View only this post Read Less

NUCAPS views Saharan Air over the Atlantic

There have been many episodes of Saharan Air over the tropical Atlantic within the past months, and another episode is in progress on 20 September. The Saharan Air Layer (SAL) analysis, above, from the CIMSS Tropical Weather website (Direct Link), shows dry air north and east of the Caribbean. The Clean Window ABI Band... Read More

Saharan Air Layer Analysis over the Tropical Atlantic, 0600 UTC on 20 September 2018 (Click to enlarge)

There have been many episodes of Saharan Air over the tropical Atlantic within the past months, and another episode is in progress on 20 September. The Saharan Air Layer (SAL) analysis, above, from the CIMSS Tropical Weather website (Direct Link), shows dry air north and east of the Caribbean. The Clean Window ABI Band 13 (10.3 µm) Full-Disk ABI infrared imagery, below, from 0500 UTC, overlain with NUCAPS sounding points, shows where data were available from that morning overpass of Suomi NPP.

GOES-16 ABI 10.3 µm Infrared Imagery at 0500 UTC along with NUCAPS Sounding Points at approximately the same time (Click to enlarge)

The stepping animation below shows NUCAPS Soundings at a selection of points that starts north of the Saharan Air Layer and ends up within the SAL. The underlying figure is the Dust RGB from AWIPS, an RGB that combines the Split Window Difference (12.3 µm -10.3 µm; Red Component), Split Cloud Top Phase Brightness Temperature Difference (11.2 µm – 8.5 µm; Green Component) and 10.3 µm Infrared Imagery (Blue Component). Typically, regions with dust as might accompany a SAL have a pink tinge. The soundings are annotated to include Total Precipitable Water measurements, and mid-level Relative humidity. NUCAPS soundings identify the region where the SAL is present.

Dust RGB at 0433 UTC north and east of the Caribbean, and NUCAPS Soundings at selected points along a transect (Click to enlarge)

The SAL air continued its movement west during the day on 20 September.  The toggle below shows the Dust RGB, ABI Band 3 (0.86 µm) and the Baseline Aerosol Detection Product (in blue) at about the same time as the afternoon NUCAPS Sounding overpass (from Suomi NPP).  Suomi NPP overflew the eastern half of the SAL air (the overpass from NOAA-20 was more centered on the SAL air approaching the Caribbean, but NOAA-20 NUCAPS soundings are not yet in AWIPS;  they should be by the end of the year).

GOES-16 ABI Dust RGB, “Veggie Band” (Near-Infrared at 0.86 µm), and Baseline Aerosol Detection Product (Blue points), 1615 UTC on 20 September 2018 (Click to enlarge)

NUCAPS Soundings at 3 points (North of the SAL, within the SAL, and south of the SAL), below, show much different thermodynamics within the SAL.

NUCAPS Profiles at ~1600 UTC on 20 September 2018 at three locations as noted (Click to enlarge)

NOAA’s G-IV flew through this outbreak, deploying dropsondes to sample the event. The path of the aircraft (with the dropsonde locations) is here. Sonde #26, below, in the heart of the SAL, is shown below, with a nearby NOAA-20 NUCAPS sounding. (Flight path and Sonde imagery courtesy Chris Barnet, STC/NOAA) Refer to the caption for details.  Recall that the Dropsonde shows values at a point.  The NUCAPS profile is sampling a volume that is approximately a 50-km cylinder!  There is nevertheless excellent agreement.

Dropsonde #26 data (raw data in light grey; values averaged into the 100 NUCAPS vertical layers in black); GFS sounding in magenta. NUCAPS Microwave-only sounding in green; NUCAPS Microwave and infrared retrieval (as might be seen in AWIPS) in Red. Time offset from the Dropsonde is noted (Click to enlarge)

SAL outbreaks cause a significant deterioration in air quality over the Caribbean. The image below, courtesy Ernesto Rodriguez, SOO for the National Weather Service office in San Juan, Puerto Rico, compares Air Quality before and during a SAL outbreak in July, and during the current outbreak.

The view outside of the National Weather Service office in San Juan on 20 September and 13 July 2018 (during SAL outbreaks) and on 12 July 2018 (before a SAL outbreak). Imagery courtesy Ernesto Rodriguez, NWS SJU.

View only this post Read Less

Florence produces record rainfall in North Carolina and South Carolina

After Hurricane Florence made landfall in North Carolina during the morning hours on 14 September, it moved very slowly (at times only 2-3 mph) southwestward into South Carolina during 15-16 September (surface analyses). Prolonged heavy rainfall resulted (WPC summary), with new state records (see below) for precipitation from a tropical cyclone being set in... Read More

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly precipitation type symbols plotted in yellow and SPC storm reports plotted in cyan, 13-17 September [click to play MP4 animation]

After Hurricane Florence made landfall in North Carolina during the morning hours on 14 September, it moved very slowly (at times only 2-3 mph) southwestward into South Carolina during 15-16 September (surface analyses). Prolonged heavy rainfall resulted (WPC summary), with new state records (see below) for precipitation from a tropical cyclone being set in North Carolina (35.93 inches) and South Carolina (23.63 inches). GOES-16 (GOES-East) “Clean” Infrared Window (10.3 µm) images every 5 minutes during the 4-day period of 13-16 September (above) showed the evolution of banding and the development of new convection that produced the heavy rainfall — widespread flooding along with strong winds caused power outages across portions of the 2 states (NC | SC), and closed sections of Interstates 95 and 40. Note that the power outages caused extended dropouts of the plotted surface reports — especially in eastern North Carolina; reports were missing when the gray 4-letter station identifiers disappeared — even though many of those sites were likely experiencing heavy rainfall during those dropout times.

Florence also spawned a few tornadoes on 14, 15 and 16 September — SPC storm reports are plotted in cyan on the GOES-16 Infrared images.

Hourly images of the MIMIC Total Precipitable Water product (below) showed tropical moisture associated with Florence as it moved inland during the 13-17 September period.

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product, 13-17 September [click to play animation | MP4]

Animations of plots of rawinsonde data from the coastal sites of Newport/Morehead City, North Carolina and Charleston, South Carolina (below) revealed the increase in deep tropical moisture from 13-16 September — Total Precipitable Water values were as high as 68.6 mm (2.70 inches) at Newport and 67.8 mm (2.67 inches) at Charleston.

Daily plots of rawinsonde data from Newport/Morehead City, North Carolina [click to enlarge]

Daily plots of rawinsonde data from Newport/Morehead City, North Carolina [click to enlarge]

Daily plots of rawinsonde data from Charleston, South Carolina [click to enlarge]

Daily plots of rawinsonde data from Charleston, South Carolina [click to enlarge]

As the remnants of Florence moved from Kentucky to West Virginia during the daylight hours of 17 September, numerous tornadoes occurred in central Virginia (SPC storm reports | NWS Wakefield summary). 1-minute GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed the development of thunderstorms which produced these tornadoes.

GOES-16 "Red" Visible (0.64 µm, left) and "Clean" Infrared Window (10.3 µm, right) images, with plots of SPC storm reports [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images, with plots of SPC storm reports [click to play MP4 animation]

 

===== 18 September Update =====

Before/after (26 August/18 September) Terra MODIS False Color RGB images [click to enlarge]

Terra MODIS False Color RGB images, 26 August vs. 18 September [click to enlarge]

A comparison of before/after (26 August/18 September) Terra MODIS False Color Red-Green-Blue (RGB) images from the MODIS Today site (above) showed areas of inland flooding (increasing water coverage appears as darker shades of blue) in the wake of Florence across far southeastern North Carolina and far northeastern South Carolina.

Looking slightly to the south, a similar before/after comparison of Terra MODIS True Color RGB images (below) revealed areas of sediment runoff into the Atlantic Ocean.

Terra MODIS True Color RGB images, 26 August vs. 18 September [click to enlarge]

Terra MODIS True Color RGB images, 26 August vs. 18 September [click to enlarge]

View only this post Read Less

Hurricane Florence makes landfall in North Carolina

Hurricane Florence made landfall near Wrightsville Beach, North Carolina at 1115 UTC (7:15 am EDT) with estimated maximum winds of 78 knots (90 mph) and a minimum central pressure estimate of 958 hPa (28.29″). Overlapping GOES-16 (GOES-East) Mesoscale Domain Sectors provided images every 30 seconds — “Red” Visible (0.64 µm) images (above) and “Clean”... Read More

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind gusts in knots [click to play MP4 animation]

Hurricane Florence made landfall near Wrightsville Beach, North Carolina at 1115 UTC (7:15 am EDT) with estimated maximum winds of 78 knots (90 mph) and a minimum central pressure estimate of 958 hPa (28.29″). Overlapping GOES-16 (GOES-East) Mesoscale Domain Sectors provided images every 30 seconds — “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed the storm as it slowly moved inland after sunrise. A peak wind gust of 105 mph was recorded at Wilmington NC (which is located at the center of the GOES-16 images); in northeastern North Carolina, winds gusted to 105 mph at Fort Macon and 112 mph at the New River Inlet Buoy.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly plots of wind gusts [click to play MP4 animation]

The MIMIC Total Precipitable Water product (below) showed abundant moisture associated with Florence moving inland during the 48-hour period ending at 23 UTC on 14 September.

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product [click to play animation | MP4]

Toggles between Visible and Infrared Window images from Terra/Aqua MODIS and Suomi NPP VIIRS are shown below.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at 1620 UTC [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at 1801 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1835 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1835 UTC [click to enlarge]

Over the western Atlantic Ocean, strong winds associated with Florence created large waves which induced upwelling of colder water from below the ocean surface, as seen in Ocean Heat Content data (below).

Ocean Heat Content data from 14 September [click to enlarge]

Ocean Heat Content data from 14 September [click to enlarge]

View only this post Read Less