This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Near-surface winds over the south Pacific Ocean

Synthetic Aperture Radar (SAR) winds from RCM1 (RADARSAT Constellation Mission 1) over the south Pacific Ocean, from this site, show a gradient in wind speeds between 165 W and 168 W. Are there other ways to view this type of wind change over the open ocean?GOES-17 Derived Motion wind vectors, below,... Read More

SAR Winds over the South Pacific, latitude/longitudes as indicated, at 0544 UTC on 14 June 2021 (click to enlarge)

Synthetic Aperture Radar (SAR) winds from RCM1 (RADARSAT Constellation Mission 1) over the south Pacific Ocean, from this site, show a gradient in wind speeds between 165 W and 168 W. Are there other ways to view this type of wind change over the open ocean?

GOES-17 Derived Motion wind vectors, below, showing 0500 UTC wind speeds between 950 and 800 mb (a different level than the near-surface winds from the SAR data), from Real Earth, below, do not clearly show the difference in winds over this same domain.

GOES-17 Enhanced window infrared (10.3 µm, Band 13) and 950-800 mb winds, 0500 UTC on 14 June 2021 (click to enlarge).  Note that the latitude lines shown are 19.5, 22 and 24.5 South.  The cold cloud top feature near the edge of this scene is also apparent at the beginning of the animation below.

GOES-17 Shortwave infrared imagery from the same time in that region, below, shows consistent westward motion at low levels (it’s hard to distinguish from this animation if the low-level wind speeds change across the domain; the cloud motions are all similar) with eastward motion aloft (that, is: considerable shear!)

GOES-17 3.9 µm imagery over the South Pacific, latitudes/longitude lines shown, from 0500 to 0600 UTC on 14 June 2021 (Click to enlarge)

SAR winds can give information over the open ocean that is difficult to find in other places.

View only this post Read Less

“Ring” Solar eclipse shadow moving across northern North America

Early on June 10th, 2021 there was a solar eclipse for the northern portions of the globe. This was not a total, but annular (or “ring”) solar eclipse. Satellite instruments, such as NOAA’s ABI on GOES-16 (East) can monitor the shadow of the moon as it falls on the Earth.... Read More

Early on June 10th, 2021 there was a solar eclipse for the northern portions of the globe. This was not a total, but annular (or “ring”) solar eclipse. Satellite instruments, such as NOAA’s ABI on GOES-16 (East) can monitor the shadow of the moon as it falls on the Earth. There are several recent examples from December 2020 (South America), June 2020 (southern Asia), December 2019 (central Pacific), July 2019 (southern hemisphere), January 2019 (Asia) and August 2017 (central US).

GOES ABI

The shadow cast on the Earth could be seen from NOAA’s GOES-16 (East) ABI. This included both the visible and near-infrared spectral bands, and the ABI band 7 (at 3.9 micrometers).

A time animation of NOAA’s GOES-16 ABI band 3 (0.86 micrometers) on June 10, 2021.
A time animation of the cooling associated wit the shadow on the Earth’s surface can be seen in this GOES-16 ABI band 7 (3.9 micrometers) animation.
A time animation of the Full Disk view showing the CIMSS true color spectral composite on June 10, 2021. This product does not employ a Rayleigh correction.

There are other similar loops are posted on many web pages, such as this one from UW/SSEC. This page is a collection of those links.

The 10 UTC composite Full Disk GOES-16 image from June 10, 2021.

A larger image of the GOES-16 10 UTC Full Disk composite shown above.

The shadow from the moon could also been seen from NOAA’s GOES-17 (West) ABI on June 10, 2021.

A more zoomed in GOES-17 view.

AWIPS animation (mp4) of the CIMSS Natural Color RGB from both GOES-16 and GOES-17.

The same loop as above, but as an animated gif. Thanks to Scott.

Japan’s AHI

Japan’s AHI near-infared (band 4 centered at 0.86 micrometers) imagery on June 10, 2021.

While it’s subtle, the shadow could also be seen in Japan’s AHI.

HEO (highly elliptical orbit)

A satellite was recently launched by Russia into a highly elliptical orbit (Molniya). The satellite (Arctica) is in a commissioning phase, but some imagery from the 10-band imager of the eclipse shadow was released.

Google translation: An annular happened today #???????? Suns — For the first time in half a century, it was accessible for observation from Russia; it was best seen from Yakutia and Chukotka. Russian satellites #??????? and #???????? were able to capture this astronomical phenomenon from orbit.

Ground-based Image

A image from Chris Draves over Lake Mendota (Madison, WI).

Background

This map of the eclipse path shows where the June 10, 2021, annular and partial solar eclipse will occur. Times are UTC.
Credits: NASA’s Scientific Visualization Studio/Ernie Wright.

Credits

NOAA GOES-16 ABI data are via the University of Wisconsin-Madison SSEC Satellite Data Services. Thanks Scott Bachmeier, CIMSS for the AWIPS animation.

View only this post Read Less

Severe thunderstorms across North Dakota, South Dakota and Montana

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) include time-matched plots of SPC Storm Reports — and showed a number of severe thunderstorms which produce a tornado and a wind gust to 94 mph in South Dakota and hail as large as 4.00 inches in diameter in Wyoming on 08 June 2021. Numerous pulsing overshooting tops were... Read More

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) include time-matched plots of SPC Storm Reports — and showed a number of severe thunderstorms which produce a tornado and a wind gust to 94 mph in South Dakota and hail as large as 4.00 inches in diameter in Wyoming on 08 June 2021. Numerous pulsing overshooting tops were evident with these storms.

The corresponding 1-minute GOES-16 “Clean” Infrared Window (10.35 µm) images (below) displayed cloud-top infrared brightness temperatures as cold as -75ºC with some of the more robust overshooting tops.

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

View only this post Read Less

Unstable Air Comes to Madison

Most people in south-central Wisconsin have noticed how uncomfortable the weather has been over the past week. The unseasonably cool air from a week ago has been replaced with a hot, sticky airmass that feels more at home in late July than in early June. And while precipitation has been... Read More

Most people in south-central Wisconsin have noticed how uncomfortable the weather has been over the past week. The unseasonably cool air from a week ago has been replaced with a hot, sticky airmass that feels more at home in late July than in early June. And while precipitation has been sorely lacking in parts of the area, at least the atmosphere is now more supportive of rain and numerous short-lived storms have been popping up (and quickly dying out) since the weekend.

The thermodynamic profiles observed by NOAA-20 and processed by NUCAPS help give insight into the impact of the atmosphere’s change from cool and pleasant to hot and humid. Three profiles are shown here: from Thursday the 3rd, to Sunday the 6th, to Tuesday the 8th.  All three are taken in the early afternoon, and all are in the general vicinity of Madison.  The surface temperatures on all three days are generally the same.  However, the surface dew points show a steady increase from one day to the next.  The conditions on the 3rd were warm, but they were not nearly as unpleasant to experience directly as they were on the 8th thanks to the substantial increase in surface moisture that took place during that time.

Three skew-T plots from around Madison, Wisconsin, showing an increase in instability.

Of course, surface conditions don’t tell the whole story, and this is where the NUCAPS profiles prove their worth. The dashed line on each sounding represents the temperature of the near-surface mixed layer air parcels as they ascend. These air parcel trajectories were calculated by the SHARPpy package, a free and open-source tool designed to analyze atmospheric soundings.  As air rises, it cools, but it cools at different rates depending on if the air is saturated or not. If air from the surface is warmer than the air that surrounds it, it will continue to rise all on its own, but air that’s cooler is going to sink. Note that the 3rd and the 6th  are stable days. The dashed line is to the left of the red temperature line. On those days, an ascending air parcel is always colder than its environment and since cold air sinks, no surface-based air is going to rise high enough to make deep convective clouds and the rain that accompanies them.  However, on the 8th the situation is reversed: the dashed line is to the right of the temperature sounding which means that air from the surface is warmer than its environment and will rise on its own.

The instability isn’t that large on the 8th; rising air parcels aren’t substantially warmer than their environment and so there’s not a lot of buoyant energy.  Still, it has been enough to contribute to some localized showers.  That’s evident on the CMORPH satellite-based precipitation estimates over the midwest (available on SSEC RealEarth), which shows virtually no rain on the 6th but the results of some scattered showers in south-central Wisconsin on the 8th.  It’s not much, but right now the area needs every drop it can get.

CMORPH rain estimates for 6 June 2021.

CMORPH rain estimates for 8 June 2021.

 

View only this post Read Less