Large-scale blowing dust event
Strong winds — gusting as high as 77 mph in New Mexico and 88 mph in Texas — associated with a rapidly-intensifying midlatitude cyclone generated large plumes of blowing dust (originating from southeastern Arizona,southern New Mexico, northern Mexico and western Texas) on 10 April 2019. GOES-16 (GOES-East) Split Window (10.3-12.3 µm) images (above) helped to highlight the areas of blowing dust, which initially developed along and behind a cold front after 15 UTC. GOES-16 Split Window images with hourly plots of surface wind barbs and gusts (above) showed the distribution of strong winds across the region, while plots of the surface visibility (below) showed decreases to 1/4 mile at Deming, New Mexico, 1/2 mile at Lubbock, Texas and 4 miles at Altus, Oklahoma. GOES-16 True Color Red-Green-Blue (RGB) images (below; courtesy of Rick Kohrs, SSEC) depicted the blowing dust as shades of tan to light brown. Willcox Playa was the source of the dust plume coming from southeastern Arizona. Note that the dust plume emanating from White Sands, New Mexico was lighter in appearance compared to the other tan/brown-colored areas of blowing dust — this is due to the white gypsum sand that comprises the surface of White Sands National Monument. 250-meter resolution MODIS True Color RGB images from the MODIS Today site (below) provided a more detailed view of the plume streaming northeastward from its White Sands source. On the later Aqua image, dense tan-colored areas of blowing dust had developed below the thin higher-altitude veil of brighter gypsum aerosols that had earlier been lofted from White Sands. A NOAA-20 True Color RGB image viewed using RealEarth is shown below. 19 UTC surface observations at 3 sites near White Sands included Las Cruces KLRU (visibility 3 miles, wind gusting to 46 knots), Alamogordo KALM (visibility 3 miles, wind gusting to 43 knots) and Ruidoso KSRR (visibility 5 miles, wind gusting to 55 knots). The strong winds and dense areas of blowing dust reducing surface visibility not only impacted ground transportation but also posed a hazard to aviation.Dust and sandstorms create conditions of reduced visibility near the surface and like volcanic ash can create a hazard when ingested into engine intakes. In this case, the dust storm was widespread so the @NWSAWC issued a SIGMET for IFR conditions as a warning to pilots. pic.twitter.com/QOpe1pIs9b
— Scott Dennstaedt (@AvWxWorkshops) April 11, 2019
===== 11 April Update =====
In a larger-scale view of GOES-16 Split Window images (below), the yellow dust signature could be followed during the subsequent overnight hours and into the following day on 11 April, as the aerosols were being transported northeastward across the Upper Midwest. There were widespread reports and photos of dust residue on vehicles and tan/brown-colored snow in parts of Nebraska, Iowa, Minnesota and Wisconsin.
IDEA forward trajectories (below) — initialized from a cluster of elevated Aura OMI Aerosol Index points over Mexico, New Mexico and Texas — passed directly over areas of model-derived precipitation across the Upper Midwest, providing further support of precipitation scavenging of dust aerosols. Interestingly, a similar event of long range dust transport occurred on 10-11 April 2008. HYSPLIT model 24-hour forward trajectories initialized at 3 locations — El Paso, Lubbock and Amarillo in Texas — showed a few of the likely dust transport pathways toward the Upper Midwest at 3 different levels (below). GOES-16 True Color RGB images from the AOS site (below) showed that some clouds across the Upper Midwest exhibited a subtle light brown hue at times.===== 12 April Update =====
GOES-16 Split Window (10.3-12.3 µm) images (above) showed that the yellow signature of dust aerosols aloft had wrapped all the way around the southern and eastern sectors of the occluded low on 12 April.Ground-based lidar at the University of Wisconsin – Madison confirmed the presence of elevated levels of aerosol loading between the surface and 6 km.