Wildfire in the Oklahoma Panhandle

March 7th, 2020 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top left), Shortwave Infrared (3.9 µm, top right), Fire Power (bottom left) and Fire Temperature (bottom right) [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images along with 5-minute Fire Power and Fire Temperature products (which are components of the GOES Fire Detection and Characterization Algorithm (SHyMet | ATBD) showed the rapid northeastward run (as fast as 103 feet per minute) of the 13,000 acre “Beaver Fire” (also known as the “412 Fire”) in the Oklahoma Panhandle on 07 March 2020. An elevated thermal signature on Shortwave Infrared imagery first began to appear southwest of Beaver, OK around 1546 UTC  — and 3.9 µm infrared brightness temperatures eventually peaked around 139ºC. Maximum Fire Power and Fire Temperature values exceeded 3100 MW and 2900 K, respectively. Fire Warnings were issued, with residents of Beaver and Forgan being advised to evacuate as the fire rapidly approached. In Visible imagery, the dark signature of a long, narrow vegetation burn scar was evident — and pyrocumulus clouds were seen developing over the fire.


Extreme fire behavior was aided by anomalously-strong winds across the southern Plains. The peak wind gust at Beaver, Oklahoma was 46 mph; south of the fire, surface winds were gusting to 43 mph at Perryton (in far the northern Texas Panhandle), and west of the fire winds gusted to 42 mph at Guymon (in the Oklahoma Panhandle). A large-scale animation of 1-minute GOES-16 Visible images from the AOS site (below) indicated that the smoke plume was transported northeastward across Kansas and eventually moved over south-central Nebraska. Smoke reduced the surface visibility to 6 miles at Dodge City as it moved across southwestern Kansas.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) (below) displayed three snapshots of the 10-15 mile long thermal anomaly (elongated cluster of black pixels) associated with the wildfire.

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) [click to enlarge]

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) [click to enlarge]

===== 08 March Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC [click to enlarge]

During the subsequent overnight hours, a comparison of NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC or 3:57 am local time (above) revealed the dark southwest-to-northeast oriented burn scar, with isolated small fires still burning along the northwestern periphery of the burn scar. Note: the NOAA-20 images are incorrectly labelled as Suomi NPP.

===== 09 March Update =====

GOES-16 Land Surface Temperature product and

GOES-16 Land Surface Temperature product and “Red” Visible (0.64 µm) image [click to enlarge]

A toggle between a GOES-16 Land Surface Temperature product and the corresponding Visible image (above) showed the fire burn scar at 2101 UTC on 09 March. Land Surface Temperature values were 10ºF warmer within the burn scar (middle 80s F, shades of yellow to orange) compared to areas immediately adjacent to the burn feature.

Eruption of the Taal Volcano in the Philippines

January 12th, 2020 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.4 µm, right) images [click to play animation | MP4]

The Taal Volcano erupted in the Philippines around 0850 UTC on 12 January 2020. JMA Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images (above) displayed the volcanic cloud during the initial 3 hours post-eruption. Note the presence of a pronounced “warm wake” (red enhancement) downwind (north) of the summit of Taal — this appeared to be an Above-Anvil Cirrus Plume (AACP), as seen in a toggle between the Visible and Infrared images at 1910 UTC (below).

Himawari-8 "Red" Visible (0.64 µm) and "Clean" Infrared Window (10.4 µm) images at 1910 UTC [click to enlarge]

Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images at 1910 UTC [click to enlarge]

The warmest Himawari-8 10.4 µm brightness temperatures within the Above-Anvil Cirrus Plume were around -60ºC (red enhancement), which corresponded to approximately 21 km on data from 3 rawinsonde sites in the Philippines (Legaspi, Mactan and Laoag) (below).

Plots of rawinsonde data from Legaspi, Mactan and Laoag in the Philippines [click to enlarge]

Plots of rawinsonde data from Legaspi, Mactan and Laoag in the Philippines [click to enlarge]

The TROPOMI detected SO2 at altitude of 20km on 13 January:


A longer animation of Himawari-8 Infrared imagery revealed the intermittent presence of the warm wake feature until about 1400 UTC. The coldest 10.4 µm cloud-top brightness temperature was -89.7ºC.

Himawari-8 "Clean" Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

A large-scale view of Himawari-8 Infrared images (below) showed that the volcanic cloud was advected a great distance north-northeastward.

Himawari-8 "Clean" Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

A toggle between NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (below) showed the volcanic cloud at 1649 UTC.

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1648 UTC (credit: William Straka, CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1648 UTC (credit: William Straka, CIMSS) [click to enlarge]

In a sequence of Split Window Difference (11-12 µm) images (Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS) from the NOAA/CIMSS Volcanic Cloud Monitoring site (below), there was only a subtle ash signature (blue enhancement) immediately downwind of the Taal summit — due to the large amount of ice within the upper portion of the volcanic cloud, the infrared spectral ash signature was significantly masked.

Split Window Difference (11-12 um) images from Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS [click to enlarge]

Split Window Difference (11-12 µm) images from Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS [click to enlarge]

Of interest was the fact that Manila International Airport (RPLL) reported a thunderstorm at 15 UTC — there was a large amount of lightning produced by Taal’s volcanic cloud.

===== 14 January Update =====

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB images [click to play animation | MP4]

2 days after the eruption, the leading edge of Taal’s SO2-rich volcanic plume (brighter shades of yellow over areas of cold clouds) began to appear within the far western view of GOES-17 (GOES-West) Full Disk SO2 Red-Green-Blue (RGB) images (above), about 1000 miles southeast of Japan. There were also some thin filaments of SO2 (brighter shades of white over warm ocean areas) moving southward, about 1500 miles west of Hawai’i.

Multi-day outbreak of pyrocumulonimbus clouds across southeastern Australia

December 29th, 2019 |

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

JMA Himawari-8 Shortwave Infrared (3.9 µm) and Longwave Infrared Window (10.4 µm) images (above) showed a large bushfire (dark black to red pixels in the 3.9 µm imagery) in far southeastern Victoria, Australia — which quickly burned its way to the coast and produced 3 distinct pulses of pyrocumulonimbus (pyroCb) clouds on 29 December 2019. To be classified as a pyroCb, the deep convective cloud must be generated by a large/hot fire (in this case, the Cann River fire complex), and eventually exhibit cloud-top 10.4 µm infrared brightness temperatures of -40ºC and colder (assuring the heterogeneous nucleation of all supercooled water droplets to ice crystals).

The coldest cloud-top 10.4 µm infrared brightness temperature was -62.6ºC (darker green pixels) at 1650 UTC. According to rawinsonde data from Melbourne (below), this corresponded to an altitude near 13 km.

Plots of rawinsonde data from Melbourne, Australia [click to enlarge]

Plots of rawinsonde data from Melbourne, Australia [click to enlarge]

The long/narrow thermal anomaly of the hot bushfire — which burned southwestward all the way to the coast — was outlined in dark black pixels on VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, as viewed using RealEarth (below).

w (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 30 December Update =====

 Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

A Himawari-8 Target Sector was positioned over southeastern Australia beginning at 2312 UTC on 29 December, providing images at 2.5-minute intervals — a comparison of Shortwave Infrared and Longwave Infrared Window imagery (above) revealed the formation of several additional pyroCb clouds as southeastern Victoria bushfires continued to grow in number and size. During the daytime, pyroCb cloud tops will appear warmer (darker gray) than those of conventional thunderstorms in the 3.9 µm imagery, due to enhanced reflection of solar radiation off the smaller ice crystals found in the pyroCb anvil. Development of the multiple deep convective pyroCb clouds on this day may have been aided by forcing for ascent provided by an approaching cold front and mid-tropospheric trough, along with favorable upper-tropospheric jet streak dynamics.

The coldest Himawari-8 cloud-top 10.4 µm brightness temperature on 30 December was -73.15ºC at 13:24:41 UTC (violet pixel near the coast); this was 5ºC colder than the coldest temperature of -68.1ºC  — at an altitude of 15 km — on 12 UTC rawinsonde data from Melbourne (below). During the 12-hour period between the 2 soundings, the coded tropopause ascended from a height of 13.1 km (-63.7ºC) at 00 UTC to 14.2 km (-67.5ºC) at 12 UTC.

Plots of rawinsonde data from Melbourne, Australia at 00 UTC (yellow) and 12 UTC (cyan) [click to enlarge]

Plots of rawinsonde data from Melbourne, Australia at 00 UTC (yellow) and 12 UTC (cyan) [click to enlarge]

In a toggle between VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP is shown (below), a large pyroCb cloud was seen moving eastward away from the bushfires.

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 31 December Update =====

Suomi NPP VIIRS Day/Night Band, Shortwave Infrared, Near-Infrared & Active Fire Product images at 1455 UTC on 31 December (credit: William Straka, CIMSS) [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Shortwave Infrared (3.75 µm and 4.05 µm), Near-Infrared (1.61 µm and 2.25 µm) & Active Fire Product images at 1455 UTC on 31 December (credit: William Straka, CIMSS) [click to enlarge]

Suomi NPP VIIRS Day/Night Band, Shortwave Infrared, Near-Infrared & Active Fire Product images (above) showed nighttime signatures of the widespread bushfires across Victoria and New South Wales at 1455 UTC on 31 December (or 1:55 am local time on 01 January). In the town of Mallacoota, about 4000 people were forced to evacuate their homes and take shelter along the coast (media report). The surface air temperature at Mallacoota Airport briefly increased to 49ºC (120ºF) at 8:00 am local time as the fires approached (below).

A sequence of daily Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power showed the fires and smoke during the 29-31 December period (below).

Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power [click to enlarge]

Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power [click to enlarge]

A multi-day Himawari-8 GeoColor animation covering the period 28 December – 01 January is available here.

Severe turbulence over coastal South Carolina

November 15th, 2019 |

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of pilot reports and SIGMET boundaries [click to play animation | MP4]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with pilot reports of turbulence and SIGMET boundaries [click to play animation | MP4]

GOES-16 (GOES-East) Upper-level Water Vapor (6.2 µm) images (above) revealed the presence of elongated W-E oriented billow clouds, many of which exhibited small-scale ripples that were oriented N-S along the billow cloud tops, over coastal areas of South Carolina and North Carolina on 15 November 2019. An initial SIGMET (November 1) was issued covering airspace over Georgia and South Carolina — Severe Turbulence (plotted in red) was reported at 41,000 feet and at 35,000 feet. A second SIGMET (November 2) was later issued covering airspace over South Carolina and North Carolina.

The same GOES-16 Water Vapor images which include isotachs of RAP40 model maximum wind (at any level) are shown below — most of the Moderate to Severe turbulence reports were occurring within the speed gradient along the poleward (left) edge of a SW-NE oriented jet stream flowing parallel to the coast.

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of pilot reports, SIGMET boundaries, and isotachs of RAP40 model maximum wind [click to play animation | MP4]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with pilot reports of turbulence, SIGMET boundaries, and isotachs of RAP40 model maximum wind [click to play animation | MP4]

More detailed views of the billow-top ripples were provided by a Terra MODIS Visible image at 1600 UTC, and NOAA-20 VIIRS True Color Red-Green-Blue (RGB) and Infrared images as visualized using RealEarth (below).

Terra MODIS Visible (0.65 µm) image, with plots of pilot reports and SIGMET boundaries [click to enlarge]

Terra MODIS Visible (0.65 µm) image, with pilot reports of turbulence and SIGMET boundaries [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images, with pilot reports of turbulence [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images, with pilot reports of turbulence [click to enlarge]