Blowing dust in southern Bolivia

July 4th, 2020 |

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images (credit: Tim Schmit, ASPB/CIMSS) [click to play animation | MP4]

GOES-16 (GOES-East) True Color Red-Green-Blue (RGB) images created using Geo2Grid (above) showed plumes of blowing dust originating from dry river beds along portions of the Río Grande O Guapay and Río Parapetí in southern Bolivia on 04 July 2020. Strong northerly winds developed across that region, just east of the axis of a deepening trough of low pressure.

VIIRS True Color RGB images from Suomi NPP and NOAA-20 as visualized using RealEarth (below) provided a more detailed view at the blowing dust plumes.

VIIRS True Color RGB images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB images from Suomi NPP and NOAA-20 [click to enlarge]

A plot of surface report data from Viro Viru International Airport, Santa Cruz de la Sierra — located not far to the north of the blowing dust plumes — showed northerly winds gusting as high as 36 knots (41 mph) at 20 UTC (below).

Plot of surface report data from Viro Viru International Airport [click to enlarge]

Plot of surface report data from Viro Viru International Airport [click to enlarge]

Thanks to Santiago Gassó for pointing out these dust features.

Actinoform clouds near Hawai’i

June 30th, 2020 |

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 (GOES-West) “Red” Visible (0.64 µm) images (above) revealed 3 cyclonically-rotating actinoform cloud structures that were moving west-southwestward toward the Hawaiian Islands on 30 June 2020 (surface analyses).

A closer look at the northernmost actinoform feature showed it moving over Buoy 51000 (located northeast of Hawai’i) around 04 UTC on 01 July — there was somewhat of an increase in 1-minute wind speeds and wind gusts as it approached, but no obvious perturbation was seen in the air pressure (it appeared to have arrived during the typical ~12-hourly drop in pressure).

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

A sequence of 3 hourly (at 0010, 0110 and 0210 UTC) panoramic camera views from Buoy 51000 (below) suggested that there were rain showers reaching the ocean surface beneath one of the actinoform’s radial arms at 0210 UTC (GOES-17 Visible image).

Sequence of 3 hourly (at 0010, 0110 and 0210 UTC) panoramic camera views from Buoy 51000 [click to enlarge]

Sequence of 3 hourly panoramic camera views from Buoy 51000, at 0010, 0110 and 0210 UTC [click to enlarge]

True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) VIIRS images from NOAA-20 and Suomi NPP as visualized using RealEarth (below) provided a detailed view of 2 of the actinoform clouds. The radial arms that comprised the cloud features remained within the marine boundary layer, so they exhibited fairly warm cloud-top infrared brightness temperatures.

True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

Plots of rawinsonde data from Hilo, Hawai’i (below) indicated that the marine boundary layer was strongly capped by a temperature inversion at an altitude of 1.3-1.5 km (where the air temperature was around +15ºC — which was very close to the minimum cloud-top infrared brightness temperatures exhibited by the actinoform clouds).

Plots of rawinsonde data from Hilo, Hawai'i [click to enlarge]

Plots of rawinsonde data from Hilo, Hawai’i [click to enlarge]

Other examples of actinoform clouds have been shown in May 2019, March 2008, March 2007 and June 1997.

Thunderstorms affecting American Samoa

June 20th, 2020 |

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth (above) showed thunderstorms beginning to increase in areal coverage north of and in the vicinity of American Samoa on 20 June 2020, as a surface trough north of the islands began to move southward.

To monitor the flash flooding potential of these thunderstorms, a GOES-17 (GOES-West) Mesoscale Domain Sector was positioned over the American Samoa region — which provided “Clean” Infrared Window (10.35 µm) images at 1-minute intervals (below). Some of these storms exhibited minimum cloud-top infrared brightness temperatures around -80ºC (black enhancement), producing heavy rainfall (over 6 inches in 9 hours) and strong winds (gusting to 60 mph) according to the NWS Pago Pago compilation of local storm reports.

GOES-17 "Clean" Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Saharan Air Layer dust continues to stream over the Atlantic Ocean

June 17th, 2020 |

GOES-16 Split Window Difference (10.3 µm – 12.3 µm) and Dust RGB images, with surface reports plotted in blue [click to play animation | MP4]

GOES-16 Split Window Difference (10.3 µm – 12.3 µm) and Dust RGB images, with surface reports plotted in blue [click to play animation | MP4]

As a follow-up to this 15 June blog post, GOES-16 (GOES-East) Split Window Difference (10.3 µm – 12.3 µm) and Dust RGB (Red-Green-Blue) images (above) displayed signatures of another dense plume of Saharan Air Layer dust — which appeared as shades of yellow in the Split Window Difference images, and shades of magenta in the Dust RGB images — that was streaming westward off the coast of Africa and moving over the Cape Verde Islands and the eastern Atlantic Ocean from 0600 UTC on 17 June to 0020 UTC on 18 June 2020. This renewed pulse of dust was caused by an anomalously strong easterly wind burst within the lower troposphere.

GOES-16 True Color RGB images created using Geo2Grid (below) showed the characteristic tan hues of the dust plume during daylight hours (0800-1850 UTC).

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

True Color RGB images from NOAA-20 and Suomi NPP as viewed using RealEarth (below) provided views of the dust plume at 14 UTC and 15 UTC. Note that the core of the dust plume moved directly over the Cape Verde Islands.

True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

Plots of surface report data from Sal, Cape Verde (GVAC) and Nauackchott, Mauritania (GQNO) are shown below. The surface visibility dropped below 1 mile at Sal, Cape Verde from 16-18 UTC — and along the coast of Africa at Nauackchott, Mauritania the arrival of the dry easterly winds was very evident in the sharp drop of dewpoint temperatures after 09 UTC.

Plot of surface report data from Sal, Cape Verde [click to enlarge]

Plot of surface report data from Sal, Cape Verde [click to enlarge]

Plot of surface report data from Nauackchott, Mauritania [click to enlarge]

Plot of surface report data from Nauackchott, Mauritania [click to enlarge]

===== 18 June Update =====

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

On the following day, GOES-16 True Color RGB images (above) showed that the dust plume had moved a bit farther west and northwest. A longer 2-day (17-18 June) animation of GOES-16 Split Window Difference and Dust RGB images is shown below.

GOES-16 Split Window Difference (10.3 µm – 12.3 µm) and Dust RGB images, with surface reports plotted in blue [click to play animation | MP4]

GOES-16 Split Window Difference (10.3 µm – 12.3 µm) and Dust RGB images, with surface reports plotted in blue [click to play animation | MP4]