Multi-day outbreak of pyrocumulonimbus clouds across southeastern Australia

December 29th, 2019 |

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

JMA Himawari-8 Shortwave Infrared (3.9 µm) and Longwave Infrared Window (10.4 µm) images (above) showed a large bushfire (dark black to red pixels in the 3.9 µm imagery) in far southeastern Victoria, Australia — which quickly burned its way to the coast and produced 3 distinct pulses of pyrocumulonimbus (pyroCb) clouds on 29 December 2019. To be classified as a pyroCb, the deep convective cloud must be generated by a large/hot fire (in this case, the Cann River fire complex), and eventually exhibit cloud-top 10.4 µm infrared brightness temperatures of -40ºC and colder (assuring the heterogeneous nucleation of all supercooled water droplets to ice crystals).

The coldest cloud-top 10.4 µm infrared brightness temperature was -62.6ºC (darker green pixels) at 1650 UTC. According to rawinsonde data from Melbourne (below), this corresponded to an altitude near 13 km.

Plots of rawinsonde data from Melbourne, Australia [click to enlarge]

Plots of rawinsonde data from Melbourne, Australia [click to enlarge]

The long/narrow thermal anomaly of the hot bushfire — which burned southwestward all the way to the coast — was outlined in dark black pixels on VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, as viewed using RealEarth (below).

w (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 30 December Update =====

 Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and Longwave Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

A Himawari-8 Target Sector was positioned over southeastern Australia beginning at 2312 UTC on 29 December, providing images at 2.5-minute intervals — a comparison of Shortwave Infrared and Longwave Infrared Window imagery (above) revealed the formation of several additional pyroCb clouds as southeastern Victoria bushfires continued to grow in number and size. During the daytime, pyroCb cloud tops will appear warmer (darker gray) than those of conventional thunderstorms in the 3.9 µm imagery, due to enhanced reflection of solar radiation off the smaller ice crystals found in the pyroCb anvil. Development of the multiple deep convective pyroCb clouds on this day may have been aided by forcing for ascent provided by an approaching cold front and mid-tropospheric trough, along with favorable upper-tropospheric jet streak dynamics.

The coldest Himawari-8 cloud-top 10.4 µm brightness temperature on 30 December was -73.15ºC at 13:24:41 UTC (violet pixel near the coast); this was 5ºC colder than the coldest temperature of -68.1ºC  — at an altitude of 15 km — on 12 UTC rawinsonde data from Melbourne (below). During the 12-hour period between the 2 soundings, the coded tropopause ascended from a height of 13.1 km (-63.7ºC) at 00 UTC to 14.2 km (-67.5ºC) at 12 UTC.

Plots of rawinsonde data from Melbourne, Australia at 00 UTC (yellow) and 12 UTC (cyan) [click to enlarge]

Plots of rawinsonde data from Melbourne, Australia at 00 UTC (yellow) and 12 UTC (cyan) [click to enlarge]

In a toggle between VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP is shown (below), a large pyroCb cloud was seen moving eastward away from the bushfires.

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 31 December Update =====

Suomi NPP VIIRS Day/Night Band, Shortwave Infrared, Near-Infrared & Active Fire Product images at 1455 UTC on 31 December (credit: William Straka, CIMSS) [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Shortwave Infrared (3.75 µm and 4.05 µm), Near-Infrared (1.61 µm and 2.25 µm) & Active Fire Product images at 1455 UTC on 31 December (credit: William Straka, CIMSS) [click to enlarge]

Suomi NPP VIIRS Day/Night Band, Shortwave Infrared, Near-Infrared & Active Fire Product images (above) showed nighttime signatures of the widespread bushfires across Victoria and New South Wales at 1455 UTC on 31 December (or 1:55 am local time on 01 January). In the town of Mallacoota, about 4000 people were forced to evacuate their homes and take shelter along the coast (media report). The surface air temperature at Mallacoota Airport briefly increased to 49ºC (120ºF) at 8:00 am local time as the fires approached (below).

A sequence of daily Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power showed the fires and smoke during the 29-31 December period (below).

Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power [click to enlarge]

Aqua MODIS True Color RGB images with an overlay of VIIRS Fire Radiative Power [click to enlarge]

A multi-day Himawari-8 GeoColor animation covering the period 28 December – 01 January is available here.

Lake-effect, river-effect and bay-effect cloud bands producing snowfall

November 13th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm), “Clean” Infrared Window (10.35 µm) and Day Cloud Phase Distinction RGB images on 07 November [click to play animation | MP4]

During the course of multiple intrusions of arctic air across the Lower 48 states during early November 2019, a variety of lake-effect, river-effect and bay-effect cloud features were generated — many of which produced varying intensities of snowfall. GOES-16 (GOES-East) “Red” Visible (0.64 µm), “Clean:” Infrared Window (10.35 µm) and Day Cloud Phase Distinction Red-Green-Blue (RGB) images on 07 November (above) showed lake-effect clouds streaming south-southeastward across Lake Superior. The Day Cloud Phase Distinction RGB images (in tandem with the Infrared images) helped to highlight which cloud features had glaciated and were therefore more capable of producing moderate to heavy lake-effect snow; the dominant band yielded 5-10 inches of snowfall in the central part of northern Michigan.

On 11 November, GOES-16 Nighttime Microphysics RGB images (below) displayed lake-effect clouds originating from the still-unfrozen waters of Fort Peck Lake in northeastern Montana — these clouds did produce a brief period of light snowfall downstream at Glendive (KGDV). On this particular morning, the lowest temperature in the US occurred in north-central Montana, with -30ºF reported north of Rudyard.

GOES-16 Nighttime Cloud Phase Distinction RGB images on 11 November [click to play animation | MP4]

GOES-16 Nighttime Microphysics RGB images on 11 November [click to play animation | MP4]

On 12 November, cold air moving southward across the Lower Mississippi Valley produced horizontal convective roll clouds which were evident in GOES-16 Nighttime Microphysics RGB and subsequent Visible images after sunrise (below) — one of these narrow cloud bands was likely enhanced by latent heat fluxes as it passed over the comparatively-warm waters of the Mississippi River, and produced accumulating snowfall in downtown Memphis. Note that since Memphis International Airport KMEM was located just east of the cloud band, no accumulating snow was reported there (only a brief snow flurry around 1430 UTC).

GOES-16 Nighttime Microphysics RGB and "Red" Visible (0.64 µm) images on 12 November [click to play animation | MP4]

GOES-16 Nighttime Microphysics RGB and “Red” Visible (0.64 µm) images on 12 November [click to play animation | MP4]

Aqua MODIS Sea Surface Temperature values along parts of the Mississippi River were as warm as the mid-40s F (below).

MODIS Sea Surface Temperature product at 1848 UTC on 12 November; rivers are plotted in red [click to enlarge]

Aqua MODIS Sea Surface Temperature product at 1848 UTC on 12 November; rivers are plotted in red [click to enlarge]


On 13 November, as the cold air was moving off the US East Coast, GOES-16 Infrared images (below) revealed bay-effect cloud plumes which developed over Chesapeake Bay and Delaware Bay — the Chesapeake Bay plume produced brief periods of light snow at Oceana Naval Air Station in Virginia Beach KNTU from 06-10 UTC (and possibly contributed to snowfall farther south at Elizabeth City, North Carolina KECG).

GOES-16 "Clean" Infrared Window (10.35 µm) images on 12 November [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images on 12 November [click to play animation | MP4]

Terra MODIS Sea Surface Temperature values in Chesapeake Bay and Delaware Bay were in the lower to middle 50s F where the bay-effect cloud plumes were originating (below).

Terra MODIS Sea Surface Temperature product and Visible (0.65 µm) image at 1613 UTC [click to enlarge]

Terra MODIS Sea Surface Temperature product and Visible (0.65 µm) image at 1613 UTC [click to enlarge]

Early-season winter storm in the Northern Plains

October 12th, 2019 |

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly surface weather type plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly surface weather type plotted in red [click to play animation | MP4]

With the approach of an anomalously-deep 500 hPa low, an early-season winter storm produced very heavy snowfall and blizzard conditions across the Northern Plains — particularly in central/eastern North Dakota and southern Manitoba — during the 10 October12 October 2019 period. GOES-16 (GOES-East) Mid-level Water Vapor (6.9 µm) images (above) showed the long duration of precipitation across that region. Text listings of snowfall totals and wind gusts are available from WPC, NWS Bismarck and NWS Grand Forks (more complete storm summaries: NWS Bismarck | NWS Grand Forks). The highest storm total snowfall amount in far southern Manitoba was 32 inches south of Morten (which reported a snow depth of 30 inches on the morning of 12 October), with 30 inches in central North Dakota at Harvey.

GOES-16 “Red” Visible (0.64 µm) images (below) displayed the storm during the daylight hours on 10/11/12 October.

GOES-16 "Red" Visible (0.64 µm) images on 10/11/12 October, with hourly precipitation type plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images on 10/11/12 October, with hourly precipitation type plotted in red [click to play animation | MP4]

On 11 October, GOES-16 Visible images with an overlay of GLM Flash Extent Density (below) revealed intermittent clusters of lightning activity over northwestern Minnesota, northeastern North Dakota and southern Manitoba — while no surface stations explicitly reported a thunderstorm, NWS Grand Forks received calls from the public about thundersnow. The texture of cloud tops in the Visible imagery also supported the presence of embedded convective elements, which likely enhanced snowfall rates as they pivoted across that area. An animation of GOES-16 Visible imagery with plots of GLM Groups and surface weather type is available here.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with an overlay of GLM Flash Extent Density [click to play animation | MP4]

Note that this lightning-producing convection was occurring near the leading edge of the cyclone’s mid-tropospheric dry slot, as seen in GOES-16 Water Vapor imagery (below).

GOES-16 "Red" Visible (0.64 µm, left) and Mid-level Water Vapor (6.9 µm, right) images, with GLM Groups plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, left) and Mid-level Water Vapor (6.9 µm, right) images, with GLM Groups plotted in red [click to play animation | MP4]

One important aspect of this storm was the formation of a TROugh of Warm air ALoft or TROWAL (SHyMet | Martin, 1998) as the surface low began to enter its occluded phase on 11 October — contours of Equivalent Potential Temperature along the 295 K isentropic surface (below) helped to diagnose the axis of the TROWAL as it curved cyclonically from southwestern Ontario to southern Manitoba and then southward over North Dakota.

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K equivalent potential temperature contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Equivalent Potential Temperature contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

A similar animation with contours of 295 K specific humidity (below) also displayed the orientation of a west-to-east cross section B-B’ (green) across northern Northern Minnesota and northern Minnesota.

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Specific Humidity contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Specific Humidity contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

The Line B-B’ cross section at 16 UTC (with and without contours of Equivalent Potential Temperature) is shown below. Note the deep column of upward vertical velocity (highlighted by color shading of Omega) centered over Langdon, North Dakota — the moist TROWAL airstream can be seen sloping isentropically upward and westward behind the 3 g/kg Specific Humidity contour, as it approached the region of upward vertical motion. Langdon received 27 inches of snowfall; the prolonged southward passage of the TROWAL over North Dakota likely contributed to this accumulation.

Cross section of RAP40 model fields along Line B-B' at 16 UTC [click to enlarge]

Cross section of RAP40 model fields along Line B-B’ at 16 UTC [click to enlarge]

As the storm was gradually winding down on 12 October, its circulation exhibited a very broad middle-tropospheric signature on GOES-16 Water Vapor imagery (below).

GOES-16 Mid-level Water Vapor (6.9 µm) images, with surface frontal positions [click to play animation]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with surface frontal positions [click to play animation | MP4]

===== 17 October Update =====

Aqua MODIS True Color and False Color RGB images [click to enlarge]

Aqua MODIS True Color and False Color RGB images [click to enlarge]

After the area had already experienced its wettest Fall season on record, additional rainfall and snowmelt from this winter storm exacerbated ongoing flooding problems. A comparison of 250-meter resolution Aqua MODIS True Color and False Color Red-Green-Blue (RGB) images (source) centered over northeastern North Dakota (above) revealed flooding along the Red River (which flows northward along the North Dakota / Minnesota border) — water appears as darker shades of blue in the False Color image.

A Suomi NPP VIIRS Flood Product depicting floodwater fractions in the Red River Valley north of Grand Forks ND (as visualized using RealEarth) is shown below.

Suomi NPP VIIRS Flood Product, depicting floodwater fractions in the Red River Valley north of Grand Forks, ND [click to enlarge]

Suomi NPP VIIRS Flood Product, depicting floodwater fractions in the Red River Valley north of Grand Forks, ND [click to enlarge]

===== 18 October Update =====

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

On 18 October — 1 week after the height of the historic blizzard — GOES-16 Day Cloud Phase Distinction RGB images showed significant snow cover (brighter shades of green) remaining in parts of northeastern North Dakota and southern Manitoba that received the highest storm total snowfall accumulations (for example, 32″ south of Morden MB, 29″ at Vang ND, 28″ at Olga ND and 27″ at Langdon ND). The site south of Morden MB reported a residual snow depth of 10 inches that morning.

Elevated NO2 signatures over the Northeast US

July 19th, 2019 |

TROPOMI NO2 concentration [click to enlarge]

TROPOMI NO2 concentration, courtesy of Bob Carp, SSEC [click to enlarge]

High temperatures (along with high dewpoints) prompted the issuance of Excessive Heat Warnings across much of the Northeast US on 19 July 2019. Under such conditions, surface NO2 concentrations in densely-populated urban areas often become elevated (primarily driven by emissions from motor vehicle exhaust, along with secondary sources such as coal-fired power plants and manufacturing / food processing industrial sources) — the high temperatures accelerate chemical reactions that form pollutants. The TROPOMI instrument detected plumes of elevated NO2 extending downwind (to the northeast) of major cities such as Philadelphia, New York City and Boston (above). The data are displayed using McIDAS-V.

A closer view centered on New York City is shown below.

TROPOMI NO2 concentration [click to enlarge]

TROPOMI NO2 concentration, courtesy of Bob Carp, SSEC [click to enlarge]

The Aqua MODIS Land Surface Temperature product around that time (below) revealed LST values in the 100-110ºF range across the New York City and Boston areas, where the daily maximum surface air temperatures were 95ºF and 93ªF, respectively.

Aqua MODIS Land Surface Temperature, with plots of daily maximum surface air temperatures [click to enlarge]

Aqua MODIS Land Surface Temperature, with plots of daily maximum surface air temperatures [click to enlarge]