# **Quick Guide**

Split Window Difference (10.3µm – 12.3µm)

### Why is the Split Window Difference Important?

NOAA

The Split Window Difference (SWD) is a Brightness Temperature Difference (BTD) field that highlights low-level moisture and dust. Moisture can be detected because there is more absorption by water vapor of energy at wavelengths in the 'Dirty Window' Channel (12.3  $\mu$ m) than in the 'Clean Window' (10.3  $\mu$ m). Dust can be detected because airborne silicates absorb more 10.3  $\mu$ m energy than 12.3  $\mu$ m energy. More absorption of energy leads to colder brightness temperatures. In the image at right, lighter grays highlight a greater SWD, *i.e.*, more moisture in the atmosphere. Convection later forms on the moist axis



Split Window Difference, 1457 UTC on 5 September 2017. Note the enhancement in the value over northwest Kansas. Inset: 10.3 μm infrared imagery at 1957 UTC 5 September. Convection developed along the SWD axis.

Limitations

### What can the Split Window Difference tell you?

| Sign     | Physically Relates to         | Wavelength of energy being<br>absorbed | What is absorbing the energy? |
|----------|-------------------------------|----------------------------------------|-------------------------------|
| Positive | Moisture in the<br>Atmosphere | 12.3 µm                                | Water Vapor                   |
| Negative | Dust in the Atmosphere        | 10.3 µm                                | Silicate Dust Particles       |

### **Impact on Operations**

| Primary Application: Identify gradients  | Limitation: If dust is occurring in a moist |
|------------------------------------------|---------------------------------------------|
| in moisture, or detect moistening in the | environment, the cooling effects of         |
| atmosphere.                              | water vapor and silicates can balance       |
|                                          | each other.                                 |
|                                          | Limitation: Changes in the difference       |
| Application: Identify regions of low-    | field can be affected by changes in         |
| level dust.                              | moisture or changes in temperature –        |
|                                          | or both. This is especially true as         |
|                                          | heating erodes inversions after sunrise.    |
|                                          |                                             |





# Split Window Difference (10.3µm – 12.3µm)

## Quick Guide



#### Image Interpretation

1

2

The SWD shows negative values where dust exists, because the 10.3 µm Brightness Temperature (BT) is colder than the 12.3 µm BT: Silicates in dust absorb 10.3 µm radiation.

The SWD shows positive values where a moist airmass exists, because the 10.3 µm Brightness Temperature (BT) is warmer than the 12.3 µm: water vapor absorbs energy at 12.3 µm. Gradients in the SWD can highlight moisture gradients.



Split Window Difference (10.3 µm – 12.3 µm) from GOES-16 ABI at 2327 UTC, 23 March 2017 (Top), GOES-16 ABI 'Blue Band' (0.47 µm) at 2327 UTC, 23 March 2017 (Bottom)

The SWD (below right, from page 1) can describe low-level moisture; features in it will appear in other measures of moisture (Total Precipitable Water (TPW), for example, or Convective Available Potential Energy (CAPE)), as shown below.

1

dust





#### **Resources**

2

moist

Journal Article on SWD Use of the GOES-R Split-Window Difference to Diagnose Deepening Low-Level Water Vapor

Training Recording FDTD GOES-16 Webinar on SWD

Hyperlinks do not work in AWIPS but they do in VLab