GOES-16 Mesoscale Sectors: improved monitoring of fire activity
** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **The ABI instrument on GOES-16 is able to scan 2 Mesoscale Sectors, each of which provides images at 1-minute intervals. For what was likely a prescribed burn in the Francis Marion National Forest (near the coast of South Carolina) on 19 March 2017, a comparison of 1 minute Mesoscale Sector GOES-16 and 15-30 minute Routine Scan GOES-13 Shortwave Infrared (3.9 µm) images (above; also available as a 50 Mbyte animated GIF) demonstrated the clear advantage of 1-minute imagery in terms of monitoring the short-term intensity fluctuations that are often exhibited by fire activity. In this case, the intensity of the fire began to increase during 15:15-15:45 UTC — a time period when there was a 30-minute gap in routine scan imagery from GOES-13. The GOES-16 shortwave infrared brightness temperature then became very hot (red enhancement) beginning at 15:46:58 UTC, which again was not captured by GOES-13 — even on the 16:00 UTC and later images (however, this might be due to the more coarse 4-km spatial resolution of GOES-13, compared to the 2-km resolution of the shortwave infrared band on GOES-16). Similar short-term intensity fluctuations of a smaller fire (burning just to the southwest) were not adequately captured by GOES-13.
The corresponding GOES-16 vs GOES-13 Visible image comparison (below; also available as a 72 Mbyte animated GIF) also showed the advantage of 1-minute scans, along with the improved 0.5-km spatial resolution of the 0.64 µm spectral band on GOES-16 (which allowed brief pulses of pyrocumulus clouds to be seen developing over the fire source region).
The rapid south-southeastward spread of the smoke plume could also be seen on true-color Red/Green/Blue (RGB) images from Terra/Aqua MODIS and Suomi NPP VIIRS, as viewed using RealEarth (below).