Fire activity across southern Mexico

March 25th, 2020 |

GOES-16

GOES-16 “Red” Visible (0.64 um) and Shortwave Infrared (3.9 um) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 um) and Shortwave Infrared (3.9 um) images (above) showed smoke plumes and hot thermal signatures associated with wildfires between Pueblo (MMPB) and Veracruz (MMVC) in southern Mexico — smoke from these fire was drifting westward over the Mexico City (MMMX) area.

Farther to the east, GOES-16 Shortwave Infrared images (below) displayed the hot thermal signatures of widespread agricultural fires across Mexico’s Yucatan Peninsula. Such fires occur here and over much of Central America as farmers prepare their fields for another round of crop planting.

GOES-16 Shortwave Infrared (3.9 um) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 um) images [click to play animation | MP4]

On a larger scale, GOES-16 True Color Red-Green-Blue (RGB) images created using Geo2Grid (below) revealed the northward transport of smoke across the Gulf of Mexico, which made it as far north as southern Texas by the end of the day.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

Wildfire in the Oklahoma Panhandle

March 7th, 2020 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top left), Shortwave Infrared (3.9 µm, top right), Fire Power (bottom left) and Fire Temperature (bottom right) [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images along with 5-minute Fire Power and Fire Temperature products (which are components of the GOES Fire Detection and Characterization Algorithm (SHyMet | ATBD) showed the rapid northeastward run (as fast as 103 feet per minute) of the 13,000 acre “Beaver Fire” (also known as the “412 Fire”) in the Oklahoma Panhandle on 07 March 2020. An elevated thermal signature on Shortwave Infrared imagery first began to appear southwest of Beaver, OK around 1546 UTC  — and 3.9 µm infrared brightness temperatures eventually peaked around 139ºC. Maximum Fire Power and Fire Temperature values exceeded 3100 MW and 2900 K, respectively. Fire Warnings were issued, with residents of Beaver and Forgan being advised to evacuate as the fire rapidly approached. In Visible imagery, the dark signature of a long, narrow vegetation burn scar was evident — and pyrocumulus clouds were seen developing over the fire.


Extreme fire behavior was aided by anomalously-strong winds across the southern Plains. The peak wind gust at Beaver, Oklahoma was 46 mph; south of the fire, surface winds were gusting to 43 mph at Perryton (in far the northern Texas Panhandle), and west of the fire winds gusted to 42 mph at Guymon (in the Oklahoma Panhandle). A large-scale animation of 1-minute GOES-16 Visible images from the AOS site (below) indicated that the smoke plume was transported northeastward across Kansas and eventually moved over south-central Nebraska. Smoke reduced the surface visibility to 6 miles at Dodge City as it moved across southwestern Kansas.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) (below) displayed three snapshots of the 10-15 mile long thermal anomaly (elongated cluster of black pixels) associated with the wildfire.

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) [click to enlarge]

Shortwave Infrared images from MODIS (3.7 µm) and VIIRS (3.74 µm) [click to enlarge]

===== 08 March Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC [click to enlarge]

During the subsequent overnight hours, a comparison of NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0857 UTC or 3:57 am local time (above) revealed the dark southwest-to-northeast oriented burn scar, with isolated small fires still burning along the northwestern periphery of the burn scar. Note: the NOAA-20 images are incorrectly labelled as Suomi NPP.

===== 09 March Update =====

GOES-16 Land Surface Temperature product and

GOES-16 Land Surface Temperature product and “Red” Visible (0.64 µm) image [click to enlarge]

A toggle between a GOES-16 Land Surface Temperature product and the corresponding Visible image (above) showed the fire burn scar at 2101 UTC on 09 March. Land Surface Temperature values were 10ºF warmer within the burn scar (middle 80s F, shades of yellow to orange) compared to areas immediately adjacent to the burn feature.

Pyrocumulonimbus clouds in Australia

February 1st, 2020 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.4 µm, right) images [click to play animation | MP4]

2.5-miute Rapid Scan JMA Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and Infrared Window (10.4 µm) images (above) showed the formation of 2 small, fairly short-lived pyrocumulonimbus (pyroCb) clouds spawned by large, hot bushfires in southern New South Wales, Australia on 01 February 2020. The pyroCb clouds developed in advance of an approaching cold front (surface analyses), exhibiting 10.4 µm cloud-top infrared brightness temperatures in the -40 to -49ºC range (shades of blue). The first pyroCb formed at at 0311 UTC to the northeast of Cooma (YCOM), with the second formed at 0559 UTC just southwest of Merimbula (YMER).

NOAA-20 VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images at 0426 UTC as viewed using RealEarth (below) revealed cloud-top infrared brightness temperatures near -60ºC (darker red enhancement).

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images at 042 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images at 0426 UTC [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC or 1:54 am AEDT (below) displayed the nighttime glow and hot thermal signatures of large bushfires south and southeast of Canberra.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC (credit: William Straka, CIMSS) [click to enlarge]

Another outbreak of pyrocumulonimbus clouds in Australia

January 4th, 2020 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

Following a multi-day outbreak in late December 2019, Australian bushfires flared up again across far eastern Victoria and far southeastern New South Wales (along and ahead of a cold frontal passage) on 04 January 2020. A JMA Himawari-8 Target Sector was positioned over that region, providing images at 2.5-minute intervals — “Red” Visible (0.64 µm) images displayed the large smoke plumes with embedded pyro-convection, while Shortwave Infrared (3.9 µm) images revealed the widespread fire thermal anomalies or “hot spots” (clusters of red pixels).

Himawari-8 Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.4 µm) images (below) showed the development of 2 pyrocumulonimbus (pyroCb) clouds — the first over southern New South Wales west of Cooma (station identifier YCOM), and the second to the southwest of YCOM (near the border between Victoria and New South Wales). The second pyroCb eventually exhibited cloud-top infrared brightness temperature (IRBT) values of -70ºC and colder (purple pixels). To be classified as a pyroCb, a deep convective cloud must be generated by a large/hot fire, and eventually exhibit cloud-top 10.4 µm IRBTs of -40ºC and colder (thus assuring the heterogeneous nucleation of all supercooled water droplets to ice crystals within the thunderstorm anvil).

Himawari-8 Shortwave Infrared (3.9 µm, top) and "Clean" Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and “Clean” Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

An aircraft flying very near or through one of these pyroCb clouds experienced severe turbulence:



Farther to the north, another pyroCb developed near Nowra, New South Wales (YSNW) — which briefly exhibited a -40ºC cloud-top IRBT at 0319 UTC, but then re-intensified around 08 UTC (below).

Himawari-8 Shortwave Infrared (3.9 µm, top) and "Clean" Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm, top) and “Clean” Infrared Window (10.4 µm, bottom) images [click to play animation | MP4]

In a sequence of VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 um) images from NOAA-20 and Suomi NPP as viewed using RealEarth (below), the Nowra pyroCb was less ambiguous during the 03-04 UTC time period — and the aforementioned pair of pyroCbs straddling the border between Victoria and New South Wales were also evident.

Sequence of VIIRS True Color RGB and Infrared Window (11.45 um) images from NOAA-20 and Suomi NPP [click to enlarge]

Sequence of VIIRS True Color RGB and Infrared Window (11.45 um) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 06 January Update =====

GOES-16 Natural Color RGB images + Smoke Detection derived product [click to play animation | MP4]

GOES-16 Natural Color RGB images + Smoke Detection derived product [click to play animation | MP4]

On 06 January, GOES-16 (GOES-East) Natural Color RGB images (above) displayed the hazy signature of high-altitude smoke (originating from previous episodes of Australian fires) over parts of Chile and Argentina — and the corresponding GOES-16 Smoke Detection derived product flagged much of this feature as “High Confidence” smoke (red).

In addition, GOES-17 (GOES-West) True Color RGB images created using Geo2Grid (below) showed a dense pall of smoke over the South Pacific Ocean (northeast of New Zealand). This was smoke from the 04 January outbreak of fires.

GOES-17 True Color RGB images [click to play animation | MP4]

GOES-17 True Color RGB images [click to play animation | MP4]

===== 08 January Update =====

GOES-17 True Color RGB images, 05-08 January [click to play animation | MP4]

GOES-17 True Color RGB images, 05-08 January [click to play animation | MP4]

Full Disk GOES-17 True Color RGB images from the AOS site (above) showed the slow eastward transport of a dense pall of smoke (hazy shades of tan to light brown) across the South Pacific Ocean during the 05-08 January period.

Late in the day, GOES-17 True Color images also showed a small area of smoke drifting southward across the coast of Antarctica (below).

GOES-17 True Color images [click to play animation | MP4]

GOES-17 True Color images [click to play animation | MP4]

This was confirmed by the OMPS Aerosol Index product (below), which displayed a small lobe becoming detached from one of the larger smoke features crossing the South Pacific Ocean.

Suomi NPP OMPS Aerosol Index composites, 04-08 January (credit: Colin Seftor, SSAI)

Suomi NPP OMPS Aerosol Index composites, 04-08 January (credit: Colin Seftor, SSAI)