This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Cyclonic transport of fire smoke over the Gulf of Alaska

McIDAS images of GOES-15 0.63 µm visible channel data (above; click image to play animation) showed the cyclonic transport of smoke across the Gulf of Alaska on 20 May 2014. The source of the smoke was the Funny River Fire that was burning on the Kenai Peninsula of south-central Alaska,... Read More

GOES-15 0.63 µm visible channel images (click to play animation)

GOES-15 0.63 µm visible channel images (click to play animation)

McIDAS images of GOES-15 0.63 µm visible channel data (above; click image to play animation) showed the cyclonic transport of smoke across the Gulf of Alaska on 20 May 2014. The source of the smoke was the Funny River Fire that was burning on the Kenai Peninsula of south-central Alaska, near Soldotna. The fire quickly grew to 20,000 acres in about 24 hours.

The curved smoke plume was also quite evident on 3 separate Suomi NPP VIIRS 0.7 µm Day/Night Band images (below). Smoke was reducing the surface visibility as low as 3 miles at Homer (station identifier PAHO).

Suomi NPP VIIRS 0.7 µm Day/Night Band images

Suomi NPP VIIRS 0.7 µm Day/Night Band images

Even though patchy clouds covered the Kenai Peninsula region around 13 UTC, the fire “hot spots” (black to yellow to red color enhancement) were still detectable on the VIIRS 3.74 µm shortwave IR image (below).

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR channel images

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR channel images

View only this post Read Less

GOES-14 SRSOR: Storm-centered Loop of Supercell over the High Plains of Colorado

An isolated Supercell Thunderstorm developed near Denver on 20 May and then moved eastward over the High Plains. The storm produced significant hail. GOES-14 was operating in SRSOR mode and viewing Colorado during the storm’s lifecycle, and the animation above (click image for a large animated gif file) is centered on the... Read More

GOES-14 0.62 µm visible channel images (click to play animation)

GOES-14 0.62 µm visible channel images (click to play animation)

An isolated Supercell Thunderstorm developed near Denver on 20 May and then moved eastward over the High Plains. The storm produced significant hail. GOES-14 was operating in SRSOR mode and viewing Colorado during the storm’s lifecycle, and the animation above (click image for a large animated gif file) is centered on the storm, highlighting the inflow into the storm from the southeast and the strong difluence around the updraft.

An earth-centered animation is available here. The animated gif clickable above is also available as a YouTube video, or downloadable in mp4 format here.

This animation shows the visible and the 10.7 µm infrared for the same time period. (Also available on YouTube).

(Two more YouTube Videos: Visible (mp4 here) and Infrared (mp4 here), with some bad lines removed)

View only this post Read Less

Second-latest snowfall on record at Rockford, Ilinois

According to the NWS Chicago, Rockford Illinois had their second-latest snowfall on record during the morning of 16 May 2014. AWIPS images of 4-km resolution GOES-13 6.5 µm water vapor channel data (above; click image to play animation) showed the distinct signature of the center... Read More

GOES-13 6.5 µm water vapor channel images (click to play animation)

GOES-13 6.5 µm water vapor channel images (click to play animation)

According to the NWS Chicago, Rockford Illinois had their second-latest snowfall on record during the morning of 16 May 2014. AWIPS images of 4-km resolution GOES-13 6.5 µm water vapor channel data (above; click image to play animation) showed the distinct signature of the center of the upper-level low that moved southeastward across Iowa and Illinois during the 15-16 May period.

The relatively dry “eye-like” signature of the center of the upper-level low also showed up well on 1-km resolution Terra and Aqua MODIS 6.7 µm water vapor channel imagery (below).

Terra and Aqua MODIS 6.7 µm water vapor channel images

Terra and Aqua MODIS 6.7 µm water vapor channel images

Widespread convective features could be seen beneath the upper-level low on 375-meter resolution (projected onto a 1-km AWIPS grid) Suomi NPP VIIRS 0.64 µm visible channel images (below).

Suomi NPP VIIRS 0.64 µm visible channel images

Suomi NPP VIIRS 0.64 µm visible channel images

View only this post Read Less

Southern California wildfires

With an ongoing extreme to exceptional drought, hot temperatures (daily high temperatures along the coastal areas as high as 106º F at John Wayne Airport) combined with strong offshore Santa Ana winds (gusting as high as 87 mph at Big Black Mountain) conspired to create an environment favorable for wildfires... Read More

GOES-15 0.63 µm visible channel images (click to play animation)

GOES-15 0.63 µm visible channel images (click to play animation)

With an ongoing extreme to exceptional drought, hot temperatures (daily high temperatures along the coastal areas as high as 106º F at John Wayne Airport) combined with strong offshore Santa Ana winds (gusting as high as 87 mph at Big Black Mountain) conspired to create an environment favorable for wildfires across southern California and northern Baja California on 14 May 2014. McIDAS images of GOES-15 0.63 µm visible channel data (above; click image to play animation) showed a number of smoke plumes streaming off the coast during the day. Note the brief appearance of a cluster of bright white pixels on the 18:00 UTC image, just north of the California/Baja California border — this a signal of sunlight being reflected off of large solar panel arrays in that area.

The side-by-side comparison of GOES-15 (GOES-West) and GOES-13 (GOES-East) 0.63 µm visible channel images (below) showed that with a lowering sun angle at the end of the day, the smoke plumes began to become more difficult to identify on GOES-15 images (left); on the other hand, thanks to the benefit of a favorable forward scattering angle, the areal coverage of the smoke plumes stood out very well on GOES-13 images (right). The enhancements are the same on both sets of images.

GOES-15 (left) and GOES-13 (right) 0.63 µm visible channel images

GOES-15 (left) and GOES-13 (right) 0.63 µm visible channel images

A 375-meter resolution Suomi NPP VIIRS true-color Red/Green/Blue (RGB) image visualized using the SSEC RealEarth web map server (below) showed these smoke plumes with great clarity at 20:25 UTC or 1:25 PM local time.

Suomi NPP VIIRS true-color RGB image

Suomi NPP VIIRS true-color RGB image

As the larger fires continued to burn into the subsequent overnight hours, their hot thermal signature could be detected on AWIPS images of 4-km resolution GOES-15 3.9 µm shortwave IR channel data (below; click image to play animation).

GOES-15 3.9 µm shortwave IR images (click to play animation)

GOES-15 3.9 µm shortwave IR images (click to play animation)

A nighttime comparison of a 375-meter resolution Suomi NPP VIIRS 3.74 µm shortwave IR image with the corresponding 750-meter resolution VIIRS Day/Night Band image (below) showed a prominent fire hot spot (yellow to red pixels) on the shortwave IR image between San Diego (KSAN) and Camp Pendleton (KNFG), along with light gray signature of the narrow, fresh smoke plume that was being blown off the coast from that fire on the Day/Night Band image. At the time of the image, smoke was restricting the surface visibility to 5 miles at Camp Pendleton. Farther offshore, reflected moonlight was helping to show the location of smoke that had spread out over the adjacent waters of the Pacific Ocean from the previous day of burning.

Suomi NPP VIIRS 3.74 µm shortwave IR and 0.7 µm Day/Night Band images

Suomi NPP VIIRS 3.74 µm shortwave IR and 0.7 µm Day/Night Band images

Finally, a demonstration of the importance of higher spatial resolution for accurate fire hot spot detection: on the comparison of 375-meter resolution Suomi NPP VIIRS 3.74 µm and 4-km resolution GOES-15 3.9 µm shortwave IR images (below), note that although the size of the fire “hot spot” was smaller on the VIIRS image, the highest IR brightness temperature was 54.5º C (compared to 48.0º C on the GOES-15 image). In addition, the two smaller fires burning in northern Baja California were not detected on the GOES-15 image.

Suomi NPP VIIRS 3.74 µm and GOES-15 3.9 µm shortwave IR images

Suomi NPP VIIRS 3.74 µm and GOES-15 3.9 µm shortwave IR images

View only this post Read Less