This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Typhoon Lionrock in the West Pacific

Typhoon Lionrock (12W) in the West Pacific Ocean briefly intensified to Category 4 during the northeastward motion segment of its rather unusual track (above) — the intensity estimate from the Advanced Dvorak Technique peaked at 112.4 knots from 2140 UTC on 26 August to 0630 UTC on 27 August (plot | text).During this... Read More

Track of Typhoon Lionrock [click to enlarge]

Track of Typhoon Lionrock [click to enlarge]

Typhoon Lionrock (12W) in the West Pacific Ocean briefly intensified to Category 4 during the northeastward motion segment of its rather unusual track (above) — the intensity estimate from the Advanced Dvorak Technique peaked at 112.4 knots from 2140 UTC on 26 August to 0630 UTC on 27 August (plot | text).

During this period of intensification, 2.5 minute interval rapid-scan Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (below; also available as a large 85 Mbyte animated GIF) revealed complex patterns of cloud-top radial and transverse banding. Surface mesoscale vortices were also seen at times within the open eye feature.

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

A few hours later, the Category 3 intensity typhoon continued to exhibit a well-defined eye structure in both DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images around 18 UTC (below).

DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images [click to enlarge]

DMSP-15 SSMI Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images [click to enlarge]

During the nighttime hours preceding the intensification to Category 4, a comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (below; courtesy of William Straka, SSEC) showed the eye of Lionrock at 1631 UTC on 26 August.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

===== 28 August Update =====

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play MP4 animation]

Typhoon Lionrock again intensified to a Category 4 storm on 28 August; a comparison of 2.5 minute interval rapid-scan Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images is shown above (also available as a large 68 Mbyte animated GIF).

View only this post Read Less

323 reindeer killed by lightning in Norway

GFS model fields from this site (above) showed a relatively compact storm that was deepening as it moved northeastward across southern and central Norway on 26 August 2016.EUMETSAT Meteosat-10 Visible (0.75 µm) and Infrared Window (10.8 µm) images (below; also available as an MP4 animation) revealed the development of thunderstorms over southern Norway... Read More

GFS model fields of surface pressure, 6-hour precipitation, 850 hPa temperature, and 10-m wind [click to play animation]

GFS model fields of surface pressure, 6-hour precipitation, 850 hPa temperature, and 10-m wind [click to play animation]

GFS model fields from this site (above) showed a relatively compact storm that was deepening as it moved northeastward across southern and central Norway on 26 August 2016.

EUMETSAT Meteosat-10 Visible (0.75 µm) and Infrared Window (10.8 µm) images (below; also available as an MP4 animation) revealed the development of thunderstorms over southern Norway during the 0900-1300 UTC period. Cloud-to-ground lightning from one of these storms is believed to have killed 323 reindeer near the southeastern corner of the Hardangervidda National Park (which is located in the center of the visible and infrared satellite images).

Meteosat-10 Visible (0.75 µm, top) and Infrared Window (10.8 µm, bottom) images, with surface reports plotted in cyan [click to play animation]

Meteosat-10 Visible (0.75 µm, top) and Infrared Window (10.8 µm, bottom) images, with surface reports plotted in cyan [click to play animation]

The coldest cloud-top infrared brightness temperatures of the thunderstorms on the 1100 UTC image was -51º C, which corresponded to an altitude of around 10.5 km on the 1200 UTC Ørland rawinsonde report (below) — looking at the individual sounding profiles, Ørland to the north of Hardangervidda was still in the moist convective environment near the center of the storm system, while Stavanger to the south began to show the drier air aloft in the wake of the northeastward-moving storm.

Rawinsonde data from Stavanger and Orland, Norway [click to enlarge]

Rawinsonde data from Stavanger and Orland, Norway [click to enlarge]

A composite of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) image swaths as viewed using RealEarth (below) showed the widespread thunderstorms across southern Norway on the earlier (eastern) 1103 UTC overpass, while the later (western) 1243 UTC overpass showed the effects of the mid-level drier air that was beginning to overspread the region as the center of the parent storm system moved northeast.

Suomi NPP VIIRS true-color image swaths [click to enlarge]

Suomi NPP VIIRS true-color image swaths [click to enlarge]

View only this post Read Less

GOES-14 SRSO-R: Tropical Disturbance near the Caribbean

GOES-14 SRSO-R Imagery is being produced over the Greater Antilles on 25 August 2016 to monitor a tropical wave (Invest 99L) that is moving towards Florida and the southeast United States. The visible animation above shows a highly sheared system: a low-level circulation center (LLCC) is evident north of Hispaniola and east of... Read More

GOES-14 Visible (0.63 µm) images [click to play animated gif]

GOES-14 Visible (0.63 µm) images [click to play animated gif]

GOES-14 SRSO-R Imagery is being produced over the Greater Antilles on 25 August 2016 to monitor a tropical wave (Invest 99L) that is moving towards Florida and the southeast United States. The visible animation above shows a highly sheared system: a low-level circulation center (LLCC) is evident north of Hispaniola and east of the Turks and Caicos, but strong convection (overshooting tops are readily apparent) is displaced well to the east of the system. There is also considerable convection over Hispaniola.

A 2-panel comparison of GOES-14 Visible and Infrared Window images, below (also available as a large 200 Mbyte animated GIF), provided a slightly closer view of the LLCC feature.

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

Wind shear analyses from the CIMSS Tropical Weather site, below, show the surface circulation is within a small ribbon of relatively strong shear. Development chances will increase if the wind shear relaxes. A GOES-13 Visible image with overlays of satellite winds and wind shear is available here.

Wind Shear Analysis, 1200 UTC on 25 August 2016 [click to play animated gif]

Wind Shear Analysis, 1200 UTC on 25 August 2016 [click to enlarge]

Metop-A overflew the system at about 0200 UTC on 25 August (link to orbit path), and winds near Tropical Storm Force cover a wide swath of the southwestern Atlantic. Even if this system does not develop into a Tropical Depression, gusty winds and abundant moisture (see the animation of MIRS Total Precipitable Water from this site, below) herald a weekend when it’s appropriate to pay attention to the weather because of the potential for rain and winds.

Morphed Observations of Total Precipitable Water from MIRS, 0000 UTC 24 August - 1500 UTC 25 August [click to play animated gif]

Morphed Observations of Total Precipitable Water from MIRS, 0000 UTC 24 August – 1500 UTC 25 August [click to play animated gif]

===== 28 August Update =====

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

Invest 99L developed into Tropical Depression 09 around 21 UTC on 28 August. A comparison of 1-minute GOES-14 Visible (0.63 µm) and Infrared Window (10.7 µm) images, above (also available as a large 94 Mbyte animated GIF), showed the tropical depression as it moved westward through the Florida Straits.

View only this post Read Less

Tornado outbreak in Indiana/Ohio

An outbreak of tornadoes (SPC storm reports) occurred during the afternoon/early evening hours of 24 August 2016 from central Indiana to northwestern Ohio (NWS Indianapolis | NWS Northern Indiana | NWS Cleveland). In terms of forcing mechanisms, while the supercell thunderstorms developed well in advance of a cold frontal boundary (surface analyses), GOES-13 Visible (0.63 µm) images (above) showed... Read More

GOES-13 Visible (0.63 µm) images, with SPC storm reports [click to play animation]

GOES-13 Visible (0.63 µm) images, with SPC storm reports [click to play animation]

An outbreak of tornadoes (SPC storm reports) occurred during the afternoon/early evening hours of 24 August 2016 from central Indiana to northwestern Ohio (NWS Indianapolis | NWS Northern Indiana | NWS Cleveland). In terms of forcing mechanisms, while the supercell thunderstorms developed well in advance of a cold frontal boundary (surface analyses), GOES-13 Visible (0.63 µm) images (above) showed a mesoscale convective vortex or MCV moving eastward across northern Illinois which may have played a role in helping to initiate convection. Moisture was also abundant across the region, with Total Precipitable Water (TPW) values as high as 53.1 mm or 2.1 inches on the 1200 UTC Lincoln IL rawinsonde report and 60.7 mm or 2.4 inches just east of the convection developing over central Indiana on the 1941 UTC Aqua MODIS TPW product (below).

Aqua MODIS Visible (0.65 µm) image and Total Precipitable Water product [click to enlarge]

Aqua MODIS Visible (0.65 µm) image and Total Precipitable Water product [click to enlarge]

A closer view of the 1841 UTC Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images (below) showed the thunderstorm complex over central Indiana just after the time of the first EF2-rated tornado in Montgomery County — the coldest cloud-top infrared brightness temperature was -80º C (violet color enhancement) over the southeastern portion of that county. In addition, an “enhanced-V” cloud top signature was evident over northeastern Clinton County — the next EF3-rated tornado formed just to the northeast in Howard County at 1920 UTC.

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

The GOES-13 (GOES-East) satellite had been placed into Rapid Scan Operations (RSO) mode, providing images as frequently as every 5-7 minutes — in the Visible (0.63 µm) images with plots of preliminary SPC storm reports of tornadoes (red) and hail/wind (cyan) shown below (also available as an MP4 animation), numerous overshooting tops can be seen. These overshooting tops were often in the vicinity of the parallax-corrected SPC storm reports (assuming a mean cloud top height of 12 km).

GOES-13 Visible (0.63 µm) images, with SPC storm reports of tornadoes in red and hail/wind in cyan [click to play animation]

GOES-13 Visible (0.63 µm) images, with SPC storm reports of tornadoes in red and hail/wind in cyan [click to play animation]

The corresponding GOES-13 Infrared Window (10.7 µm) images (below; also available as an MP4 animation) revealed cloud-top IR brightness temperatures as cold as -67º C (darker black enhancement) over Indiana at 1845 and 1855 UTC; the location of parallax-corrected preliminary SPC storm reports of tornadoes (white) and hail/wind (cyan) are also plotted on the images.

GOES-13 Infrared Window (10.7 µm) images, with plots of SPC storm reports of tornadoes in white and hail/wind in cyan [click to play animation]

GOES-13 Infrared Window (10.7 µm) images, with plots of SPC storm reports of tornadoes in white and hail/wind in cyan [click to play animation]

View only this post Read Less