This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Hurricane Dorian reaches Category 5 intensity

Overlapping 1-minute Mesoscale Domain Sectors provided GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images at 30-second intervals (above) as Hurricane Dorian reached Category 5 intensity just east of Great Abaco Island in the Bahamas during the morning hours on 01 September 2019. West of Dorian, station Identifier MYGF is Freeport on... Read More

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Overlapping 1-minute Mesoscale Domain Sectors provided GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images at 30-second intervals (above) as Hurricane Dorian reached Category 5 intensity just east of Great Abaco Island in the Bahamas during the morning hours on 01 September 2019. West of Dorian, station Identifier MYGF is Freeport on Grand Bahama Island (which stopped reporting at 00 UTC on 01 September, due to evacuation).

As noted in the 15 UTC NHC discussion, the eye of Dorian was exhibiting a pronounced “stadium effect”, with a smaller-diameter surface eye sloping outward with increasing altitude (below).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images at 1200 UTC [click to enlarge]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images at 1200 UTC [click to enlarge]

GOES-16 Visible images with and without overlays of GLM Flash Extent Density (below) revealed that lightning activity began to ramp up within the eyewall region after 12 UTC.

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

A Mid-Level Wind Shear product (below) showed that Dorian had been moving through an environment of low shear — generally 10 knots or less — during the 00-15 UTC time period on 01 September.

Mid-layer Wind Shear product, 00-15 UTC [click to enlarge]

Mid-layer Wind Shear product, 00-15 UTC [click to enlarge]


As pointed out by NWS Grand Forks (above), portions of the outer cays just east of Great Abaco Island could be seen in GOES-16 Visible imagery through breaks in the low-level clouds within the eye (below).

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 as viewed using RealEarth are shown below, as the eye was moving over Great Abaco Island.

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]


After moving slowly westward across Great Abaco Island, Dorian later became the first Category 5 hurricane on record to make landfall on Grand Bahama Island (below). Station identifier MYGF is Grand Bahama International Airport in Freeport, and MYGW is West End Airport.

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

===== 02 September Update =====

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Prior to sunrise on 02 September, 1-minute GOES-16 Infrared images (above) showed Dorian moving very slowly — with a forward speed of only 1 mph — across the eastern end of Grand Bahama Island (as it remained at Category 5 intensity).

After sunrise, 1-minute GOES-16 Visible and Infrared images (below) showed that the eye of Dorian was finally beginning to move very slowly northwestward away from Grand Bahama Island. At the end of the animation (15 UTC), Dorian was downgraded slightly to a high-end Category 4 hurricane.

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Suomi NPP VIIRS True Color RGB and Infrared images (below) provided a view of Dorian at 1817 UTC.

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

At 21 UTC, a comparison of MIMIC Total Precipitable Water and DMSP-16 SSMIS Microwave images (below) suggested that a tongue of drier air from the northwest and west was wrapping into the southern and southeastern portion of Dorian’s circulation.

MIMIC Total Precipitable Water and DMSP-16 SSMIS Microwave images at 21 UTC [click to enlarge]

MIMIC Total Precipitable Water and DMSP-16 SSMIS Microwave images at 21 UTC [click to enlarge]

A long animation of GOES-16 Infrared images (below) covers the 1.5-day period from 1200 UTC on 01 September to 2359 UTC on 02 September — and initially includes 30-second images from 1200-1515 UTC on 01 September. Dorian was rated at Category 5 intensity from 1200 UTC on 01 September until 1400 UTC on 02 September. Station identifier MYGF is Grand Bahama International Airport in Freeport.

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]


Additional satellite imagery and products are available from EUMETSAT.

View only this post Read Less

GOES-17 Loop Heat Pipe data outages reach seasonal peak

The periodic deleterious heating of the GOES-17 Advanced Baseline Imager (ABI) will reach a peak on 30 or 31 August 2019. The effects (in ABI bands 8-16) of the heating are manifest because the Loop Heat Pipe on the GOES-17 satellite does not operate at peak efficiency and cannot dissipate... Read More

All 16 GOES-17 Bands, 0750 – 1640 UTC on 30 August 2019 (Click to animate)

The periodic deleterious heating of the GOES-17 Advanced Baseline Imager (ABI) will reach a peak on 30 or 31 August 2019. The effects (in ABI bands 8-16) of the heating are manifest because the Loop Heat Pipe on the GOES-17 satellite does not operate at peak efficiency and cannot dissipate the heat that accumulates as the sun shines directly on the ABI instrument at night. The animation above shows full-disk imagery for all 16 bands on GOES-17 from 0750 UTC through 1640 UTC. Band 12 (9.6 µm) imagery is affected the most by the heating: data are unuseable from 1040 UTC to 1630 UTC; Band 10, the low-level water vapor channel at 7.3 µm is unuseable from 1050 UTC to 1620 UTC. Other infrared bands show different outages. Only Band 14 (11.2 µm) is mostly unaffected, although some striping is apparent between 1210 and 1330 UTC.

Other well-known artifacts are present in the animation. For example, a keep-out zone (or solar avoidance zone, sometimes also called the “Cookie Monster Effect”) is apparent moving across the northern 1/5th of the Globe; this image from 0910 UTC shows the feature. Satellite-Earth-Geometry means the Sun is near the limb of the Earth and the satellite sensors do not scan near the Sun. Stray Light is also present in the imagery. This shows up most distinctly in visible/near-infrared imagery, but its effects are also present in the 3.9 µm imagery.

The figure below, from this blog post, shows predicted maximum focal plane temperatures for each day.  In early September, a rapid cool-down in the peak temperature occurs as the GOES-17 satellite starts entering the shadow of the Earth during night times when it would otherwise be illuminated by the Sun.

Predicted warmest Focal Plane Temperature as a function of Year. Also included: the threshold temperatures when the ABI Detection is affected by the warmer Focal Plane. The step in values near both Equinoxes occurs when a Yaw Flip is performed on the satellite (Click to enlarge)

This website shows comparisons between GOES-16 and GOES-17 for different bands, and includes observations of the focal plane temperature.  The animation below shows the steady increase in the maximum focal plane module (FPM) temperature in August and that warmth’s impact on the Band 12 observations:  there are longer and longer periods of time with no GOES-17 Band 12 data as you move through August (indicated by difference values that are off the chart).

Mean Band 12 (9.6 µm) brightness temperature difference (between GOES-16 and GOES-17, plotted in blue) over a region on 27 July, 2 August, 10 August, 16 August, 22 August and 29 August 2019. The black line shows the Focal Plane Temperature (Click to enlarge)

A similar chart for Band 8 (6.19 µm) is shown below. Band 8 is not affected so severely by the Loop Heat Pipe. (Click here here for a similar chart for Band 14 (11.2 µm)).

Mean Band 8 (6.19 µm) brightness temperature difference (between GOES-16 and GOES-17, plotted in blue) over a region on 27 July, 2 August, 10 August, 16 August, 22 August and 29 August 2019. The black line shows the Focal Plane Temperature (Click to animate)

The intra-band differences on the effects of the excess heat are shown here for values on 29 August for Bands 8 (6.19 µm), 12 (9.6 µm) and 14 (11.2 µm).

View only this post Read Less

Hurricane Dorian

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above) showed cold overshooting tops (darker black infrared enhancement) over the Leeward Islands as well as subtle mesospheric airglow waves propagating southward away from the center of Tropical Storm Dorian at 0606 UTC on 28 August 2019.In a toggle between... Read More

NOAA-20 Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above) showed cold overshooting tops (darker black infrared enhancement) over the Leeward Islands as well as subtle mesospheric airglow waves propagating southward away from the center of Tropical Storm Dorian at 0606 UTC on 28 August 2019.

In a toggle between GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site (below), the Microwave image revealed a convective band that was wrapping around the northern portion of the center of Dorian at 0930 UTC.

GOES-16 "Clean" Infrared Window <em>(10.35 µm)</em> and DMSP-18 SSMIS Microwave <em>(85 GHz)</em> images [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [click to enlarge]

1-minute Mesoscale Domain Sector GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (below) also showed a convective burst wrapping around the eastern and northern edges of the center of Dorian after 15 UTC. The coldest cloud-top infrared brightness temperature associated with that early convective burst was -83ºC.

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Dorian was upgraded to a Category 1 Hurricane at 18 UTC. Prior to that time, the tropical cyclone had been moving through an environment of low deep-layer wind shear (below), one factor that is favorable for intensification. Dorian was also passing over water possessing warm sea surface temperatures and modest ocean heat content.

https://cimss.ssec.wisc.edu/satellite-blog/wp-content/uploads/sites/5/2019/08/.gifGOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

GOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth are shown below, from around the time when Dorian was upgraded from a Tropical Storm to a Hurricane.

VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

A comparison of GOES-16 Infrared (at 2330 UTC) and GMI Microwave (at 2341 UTC) images (below) revealed Dorian’s small eye.

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

===== 29 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

On 29 August, 1-minute GOES-16 Visible and Infrared images (above) showed that periodic convective bursts persisted around the center of Category 1 Hurricane Dorian.

During one of those convective bursts from 1800-1900 UTC, an increase in GOES-16 GLM Flash Extent Density was evident (below).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 Visible and Infrared images at 1852 UTC with and without an overlay of GLM Flash Extent Density are shown below. At that particular time, the overshooting top infrared brightness temperature reached a minimum value of -82.5C.

GOES-16 “Red” Visible (0.64 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Red” Visible (0.64 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

===== 30 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

The eye of Dorian became more well-defined in 1-minute GOES-16 Visible and Infrared images (above) during the morning hours on 30 August.

A DMSP-17 Microwave (85 GHz) Microwave image at 1141 UTC (below) did not yet show a completely closed eyewall structure at that earlier time.

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

Dorian was upgraded to a Category 3 hurricane at 18 UTC — the storm was moving into a narrow corridor of weaker deep-layer wind shear around that time. During the 3 hours leading up to 18 UTC, animations of 1-minute GOES-16 Visible and Infrared imagery — with and without an overlay of GLM Flash Extent Density — are shown below.

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

===== 31 August Update =====

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Overlapping 1-minute GOES-16 Mesoscale Domain Sectors provided imagery at 30-second intervals — Visible and Infrared animations of the Category 4 hurricane from 1430-1900 UTC are shown above and below, respectively. A longer Visible animation from 1100-2259 UTC is available here (courtesy of Pete Pokrandt, AOS).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

30-second GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

View only this post Read Less

Using NUCAPS to nowcast convective development

The animation above shows the 1721 UTC GOES-16 Visible (0.64 µm) image along with NUCAPS profile locations from a NOAA-20 overpass. Convection is approaching from the west, from central Wisconsin. NUCAPS soundings can give a good estimate for how far south that convective line might develop, and a north-south series... Read More

GOES-16 Visible Imagery (0.64 µm) at 1721 UTC on 27 August 2019. A swath of NOAA-20 NUCAPS soundings from 1718 UTC is also shown, and individual profiles from the Upper Peninsula of Michigan southeastward to southwest Lower Michigan are plotted. (Click to enlarge)

The animation above shows the 1721 UTC GOES-16 Visible (0.64 µm) image along with NUCAPS profile locations from a NOAA-20 overpass. Convection is approaching from the west, from central Wisconsin. NUCAPS soundings can give a good estimate for how far south that convective line might develop, and a north-south series of profiles is shown in the imagery above.  Note in particular how soundings show increasing mid-level stability;  a strong inversion between becomes apparent between the NUCAPS Sounding just south of Door County on the western short of Lake Michigan and over eastern Lake Michigan on the Michigan shoreline.  This thermodynamic snapshot would argue that convection should not develop much farther south than central Lake Michigan!  the 1926 UTC Visible image, below, toggled with radar, confirms this forecast.

GOES-16 Visible Imagery (0.64 µm) at 1926 UTC on 27 August 2019 — toggled with Base Reflectivity at 1924 UTC (Click to enlarge)

 


NUCAPS from one satellite will periodically, north of about 40 N, supply profiles on two consecutive passes.  That happened on 27 August over Lake Michigan as might be expected given that the 1718 UTC pass had its westernmost swath over Lake Michigan.  The animation below shows the swath from 1901 UTC.  The strengthening inversion as you move south over Lake Michigan is apparent at 1901 UTC as well.

GOES-16 Visible Imagery (0.64 µm) at 1906 UTC on 27 August 2019. A swath of NOAA-20 NUCAPS soundings from 1901 UTC is also shown, and individual profiles over Lake Michigan Michigan are plotted. (Click to enlarge)

View only this post Read Less