Year-long Animations of Visible and Infrared Images

March 26th, 2020 |

True-color visible imagery global montage from 6 March 2019 – 5 March 2020 (Click to launch containerized YouTube Vide)

A previous blog post (here) has shown 1-month animations of true-color visible imagery from geostationary satellites (GOES-16, GOES-17, Himawari-8, Meteosat-11 and others) wherein local noon longitudinal strips are blended together to create a global view. (Imagery courtesy Rick Kohrs, SSEC) (See also this blog post for an explanation). The animation above (Click it to view a YouTube animation within a container) shows visible true-color imagery for each day from 6 March 2019 through 5 March 2020.

The infrared imagery below combines the ‘clean window’ Band 13 channel on GOES-16 and GOES-17 (10.3 µm on both) with Band 13 on Himawari-8 (10.4 µm) and shows 2019 data at 6-h intervals.

Color-enhanced Window Channel infrared (ABI: 10.3 µm; AHI: 10.4 µm) imagery from 2019 (Click to launch containerized YouTube Vide)

Storm Jorge impacts the British Isles

March 1st, 2020 |

Meteosat-11 Water Vapor (6.25 µm) images, with hourly plots of surface wind barbs and gusts (in knots) [click to play animation | MP4]

Meteosat-11 Water Vapor (6.25 µm) images, with hourly plots of surface wind barbs and gusts (in knots) [click to play animation | MP4]

EUMETSAT Meteosat-11 Water Vapor (6.25 µm) images (above) showed the large field of strong surface winds associated with Storm Jorge as it approached the British Isles on 29 February – 01 March 2020. Peak wind gusts of 70 knots were recorded in Ireland.

Surface analyses from the Ocean Prediction Center (below) indicated that the Hurricane Force occluded low reached a minimum pressure of 952 hPa at 06 UTC on 29 February.

Surface analyses, from 00 UTC on 29 February to 06 UTC on 01 March [click to enlarge]

Surface analyses, from 00 UTC on 29 February to 06 UTC on 01 March [click to enlarge]

Blowing dust across the Canary Islands and Atlantic Ocean

February 23rd, 2020 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the onset of a 2-day event of dense plumes of blowing sand/dust (known locally as a Calima) — with Western Sahara and Morocco being the primary source regions — which moved across the Canary Islands and the adjacent East Atlantic Ocean on 22 February 2020. Along the coast of Morocco, surface visibility was reduced to 1/8 mile at Tan-Tan (GMAT); over the Canary Islands, visibility dropped to 1/4 mile at Gran Canaria (GCLP).

GOES-16 Dust Red-Green-Blue (RGB) images spanning the period 0800 UTC on 22 February to 2100 UTC on 23 February (below) provided a continuous day/night visualization of the first dust plume (shades of pink/magenta). During the day on 23 February, a second dust plume could be seen emerging from below a patch of mid/high-altitude clouds. The RGB images were created using Geo2Grid.

GOES-16 Dust RGB images [click to play animation | MP4]

GOES-16 Dust RGB images [click to play animation | MP4]

VIIRS True Color RGB images from Suomi NPP and NOAA-20 as viewed using RealEarth (below) revealed orographic waves in the airborne sand/dust downwind (northwest) of some of the Canary Islands on 23 February.

VIIRS True Color RGB images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB images from Suomi NPP and NOAA-20 [click to enlarge]

This sand/dust was being lofted by anomalously strong lower-tropospheric winds — which were up to 5 standard deviations above the mean at the 925 hPa pressure level (below).

925 hPa wind speed anomaly during the period 00 UTC on 22 February to 00 UTC on 24 February [click to enlarge]

925 hPa wind speed anomaly during the period 00 UTC on 22 February to 00 UTC on 24 February [click to enlarge]

===== 24 February Update =====

GOES-16 Dust RGB images [click to play animation | MP4]

GOES-16 Dust RGB images [click to play animation | MP4]

GOES-16 Dust RGB images on 24 February (above) showed the second major pulse of sand/dust curling around the northern periphery of the offshore cutoff low pressure system. Toward the end of the animation, another minor pulse could be seen streaming northwestward off the coast of Western Sahara. A longer Dust RGB animation from 08 UTC on 22 February to 18 UTC on 24 February is available here.

In addition to the Dust RGB, signatures of the airborne sand/dust were also evident in GOES-16 Split Window Difference (10.3-12.3 µm) and Split Cloud Top Phase (11.2-8.4 µm) imagery (below). This arises from the fact that silicates (sand/dust particles) have different energy absorption characteristics at varying wavelengths.

GOES-16 Dust RGB, Split Window Difference (10.3-12.3 µm) and Split Cloud Top Phase (11.2-8.4 µm) [click to play animation | MP4]

GOES-16 Dust RGB, Split Window Difference (10.3-12.3 µm) and Split Cloud Top Phase (11.2-8.4 µm) images [click to play animation | MP4]

A comparison of TROPOMI Aerosol Index, TROPOMI Aerosol layer height (meters), Meteosat-11 Natural Color RGB and Meteosat-11 Dust RGB images at 1515 UTC is shown below (credit: Bob Carp, SSEC). Note that the height of the center of the aerosol layer near the western tip of the plume was generally in the 500-1000 meter range (shades of blue to cyan).

Panel 1: TROPOMI Aerosol Index Panel 2: TROPOMI Aerosol layer height (meters) Panel 3: Meteosat-11 Natural Color RGB Panel 4: Meteosat-11 Dust RGB [click to enlarge]

TROPOMI Aerosol Index (top left), TROPOMI Aerosol layer height in meters (top right), Meteosat-11 Natural Color RGB (bottom left) and Meteosat-11 Dust RGB (bottom right) [click to enlarge]

GOES-16 Split Window Difference image, with plots of available NUCAPS profile points [click to enlarge]

GOES-16 Split Window Difference (10.3-12.3 µm) image, with plots of available NUCAPS profile points [click to enlarge]

A GOES-16 Split Window Difference (10.3-12.3 µm) image with plots of available NUCAPS profile points at 1600 UTC (above) denoted the locations of a sequence of 9 consecutive north-to-south sounding points through the western tip of the dust plume. Profiles of NUCAPS temperature and dew point data for those 9 points are shown below — the strong temperature inversion and dry air below 1 km at Points 6, 7 and 8 showed the presence of this dry, dust-laden air (and the Total Precipitable Water value dropped to a minimum value of 0.34 inch at Point 7).

Profiles of NUCAPS temperature and dew point data for Points 1-9 [click to enlarge]

Profiles of NUCAPS temperature and dew point data for Points 1-9 [click to enlarge]

Hurricane Force lows in the North Atlantic Ocean

February 15th, 2020 |

GOES-16 Mid-level Water Vapor (6.9 µm) images, with plots of hourly surface wind barbs and gusts (in knots) [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with plots of hourly surface wind barbs and gusts (in knots) [click to play animation | MP4]

GOES-16 (GOES-East) Mid-level Water Vapor (6.9 µm) images (above) showed the circulations associated with a pair of Hurricane Force low (surface analyses) during the 13-15 February 2020 period. At the limb of the GOES-16 Full Disk view, plots of hourly surface wind revealed gusts in the 70-80 knots range at stations in Iceland — including Keflavik International Airport near Reykjavik and Akurnes along the southeast coast. One site north of Reykjavik recorded a wind gust of 138 knots.

Sequences of VIIRS Infrared Window (11.45 µm) and True Color RGB images from NOAA-20 and Suomi NPP during those same days as viewed using RealEarth are shown below.

Sequences of VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to play animation]

Sequence of VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to play animation]

Sequence of VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to play animation]

Sequence of VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to play animation]

EUMETSAT Meteosat-11 Water Vapor (6.25 µm) images during the 14-16 February period are shown below. Named “Storm Dennis” by the UK Met Office, the system brought high winds to much of Europe.

Meteosat-11 Water Vapor (6.25 µm) images, with hourly wind barbs and gusts (in knots) [click to play animation | MP4]

Meteosat-11 Water Vapor (6.25 µm) images, with hourly wind barbs and gusts (in knots) [click to play animation | MP4]

Additional information about this event is available on the Satellite Liaison Blog.