Cyclone Shaheen-Gulab makes landfall in Oman

October 3rd, 2021 |

US Space Force EWS-G1 Infrared Window (10.7 µm) images [click to play animation | MP4]

US Space Force EWS-G1 (formerly GOES-13) Infrared Window (10.7 µm) images (above) showed
Hurricane Shaheen-Gulab weakening to a Tropical Storm shortly after it made a rare landfall along the coast of Oman on 03 October 2021. The storm exhibited an eye at times as it was a Category 1 Hurricane over the Gulf of Oman. This was likely the first tropical cyclone to make landfall along that coastal portion of Oman since 1890 (Wikipedia).

Meteosat-8 Infrared images, with contours of deep-layer wind shear from the CIMSS Tropical Cyclones site (below) indicated that the storm was moving through an environment of low shear.

Meteosat-8 Infrared images, with contours of deep-layer wind shear [click to enlarge]

Suomi-NPP VIIRS True Color RGB and infrared Window (11.45 µm) images viewed using RealEarth (below) showed the Category 1 Hurricane at 0927 UTC.

Suomi-NPP VIIRS True Color RGB and infrared Window (11.45 µm) images at 0927 UTC [click to enlarge]

Local Noon imagery near the Equinox

September 19th, 2021 |
Multi-satellite True-Color imagery at local noon, 19 September 2021 (Click to enlarge)

SSEC/CIMSS scientists (notably Rick Kohrs) create daily imagery that blends vertical strips of true-color imagery at local Noon, starting near the dateline and proceeding westward. A year-long animation of this product is available here, and was discussed on this blog previously here (and here). Recent images are available at this website — the imagery there, like that above, has a size of 1440×720 pixels. Full-size imagery (9200×4600 pixels) are available for purchase at the website.

The image above, from shortly before the (Northern Hemisphere) Autumnal Equinox shows illumination at both Poles. Careful inspection of the imagery does reveal difference between imagery created from Himawari-8 Imagery over eastern Asia and imagery created from Meteosat imagery over central Asia. There is a more subtle difference between Meteosat imagery and GOES-16 imagery, chiefly because that seam is over the eastern Atlantic Ocean. Such differences arise from spectral differences between the satellites.


This web page with web apps allows anyone to investigate how solar energy varies with the season.

Eruption of Mount Etna

March 24th, 2021 |

Meteosat-11 Ash Height images [click to play animation | MP4]

Meteosat-11 Ash Height images [click to play animation | MP4]

EUMETSAT Meteosat-11 Ash Height retrievals from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed that an eruption of Mount Etna in Sicily, Italy on 24 March 2021 produced an ash cloud which rose to heights of 7-8 km (darker shade of green).

The corresponding Meteosat-11 Ash Loading images are shown below — ash loading appeared to be light to moderate within much of the volcanic cloud.

Meteosat-11 Ash Loading images [click to play animation | MP4]

Meteosat-11 Ash Loading images [click to play animation | MP4]

Ash Loading values retrieved using Suomi NPP VIIRS data at at 1200 UTC (below) were notably higher than those from Meteosat-11, given the higher spatial resolution and additional spectral band data available from the VIIRS instrument.

Suomi NPP VIIRS Ash Loading at 1200 UTC [click to enlarge]

Suomi NPP VIIRS Ash Loading at 1200 UTC [click to enlarge]

A toggle between VIIRS True Color RGB images from NOAA-20 and Suomi NPP as viewed using RealEarth (below) revealed hues of tan to light brown within the volcanic plume, further supporting the presence of an elevated ash content.

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

Geostationary satellite views of the most rain over 72-hours in 2007

February 27th, 2021 |

The record for the most rain over a 72-hour period was in late February 2007, with 3.930m (154.72″)! This was on Reunion Island, associated with Tropical Cyclone Gamede in South Indian Ocean. The island is east of Madagascar. This island also holds the record for the most rain (4,869 mm (191.7 in)) over a 96-hour period, associated with the same event. More on this case can be found in this 2009 BAMS article.

Meteosat-8

While the view of the cyclone from EUMETSAT‘s MET-8 was on the edge of the viewing area, the infrared window loop was still impressive.

A 3-day color-enhanced infrared window loop from EUMETSAT’s Meteosat-8 geostationary imager.

A longer loops of 3 and 4 days were also generated. Which shows Tropical Cyclone Favio as well. For these images, the coldest brightness temperatures have the green/yellow/red/pink colors. A one-day loop (February 25, 2007) in both mp4 and animated gif formats.

Meteosat-7

EUMETSAT’s Meteosat-7, due to its location over the Indian Ocean, had a more direct view of these cyclones.

A 3-day color-enhanced infrared window loop from EUMETSAT’s Meteosat-7 geostationary imager.

Note that the view angle is improved over Meteosat-8, but the image frequency is reduced. A longer Meteosat-7 loop was also generated. Again, Tropical Cyclone Favio can be seen.

A loop of Meteosat-7 visible band from February 25, 2007.

Visible loops (mp4 format) from February 23 and 24 and 26, 2007. The same loops as animated gifs: February 23, 24, 25 and 26, 2007.

H/T

Thanks to @Weather_History for the post on this event.

The above satellite data are from EUMETSAT, accessed via the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) Data Services. The images were generated with McIDAS-X. More on EUMETSAT’s Meteosat Third Generation will appear in the Bulletin of the AMS.