Eruption of Mount Etna

March 24th, 2021 |

Meteosat-11 Ash Height images [click to play animation | MP4]

Meteosat-11 Ash Height images [click to play animation | MP4]

EUMETSAT Meteosat-11 Ash Height retrievals from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed that an eruption of Mount Etna in Sicily, Italy on 24 March 2021 produced an ash cloud which rose to heights of 7-8 km (darker shade of green).

The corresponding Meteosat-11 Ash Loading images are shown below — ash loading appeared to be light to moderate within much of the volcanic cloud.

Meteosat-11 Ash Loading images [click to play animation | MP4]

Meteosat-11 Ash Loading images [click to play animation | MP4]

Ash Loading values retrieved using Suomi NPP VIIRS data at at 1200 UTC (below) were notably higher than those from Meteosat-11, given the higher spatial resolution and additional spectral band data available from the VIIRS instrument.

Suomi NPP VIIRS Ash Loading at 1200 UTC [click to enlarge]

Suomi NPP VIIRS Ash Loading at 1200 UTC [click to enlarge]

A toggle between VIIRS True Color RGB images from NOAA-20 and Suomi NPP as viewed using RealEarth (below) revealed hues of tan to light brown within the volcanic plume, further supporting the presence of an elevated ash content.

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

Geostationary satellite views of the most rain over 72-hours in 2007

February 27th, 2021 |

The record for the most rain over a 72-hour period was in late February 2007, with 3.930m (154.72″)! This was on Reunion Island, associated with Tropical Cyclone Gamede in South Indian Ocean. The island is east of Madagascar. This island also holds the record for the most rain (4,869 mm (191.7 in)) over a 96-hour period, associated with the same event. More on this case can be found in this 2009 BAMS article.

Meteosat-8

While the view of the cyclone from EUMETSAT‘s MET-8 was on the edge of the viewing area, the infrared window loop was still impressive.

A 3-day color-enhanced infrared window loop from EUMETSAT’s Meteosat-8 geostationary imager.

A longer loops of 3 and 4 days were also generated. Which shows Tropical Cyclone Favio as well. For these images, the coldest brightness temperatures have the green/yellow/red/pink colors. A one-day loop (February 25, 2007) in both mp4 and animated gif formats.

Meteosat-7

EUMETSAT’s Meteosat-7, due to its location over the Indian Ocean, had a more direct view of these cyclones.

A 3-day color-enhanced infrared window loop from EUMETSAT’s Meteosat-7 geostationary imager.

Note that the view angle is improved over Meteosat-8, but the image frequency is reduced. A longer Meteosat-7 loop was also generated. Again, Tropical Cyclone Favio can be seen.

A loop of Meteosat-7 visible band from February 25, 2007.

Visible loops (mp4 format) from February 23 and 24 and 26, 2007. The same loops as animated gifs: February 23, 24, 25 and 26, 2007.

H/T

Thanks to @Weather_History for the post on this event.

The above satellite data are from EUMETSAT, accessed via the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) Data Services. The images were generated with McIDAS-X. More on EUMETSAT’s Meteosat Third Generation will appear in the Bulletin of the AMS.

Eruption of Mount Etna

February 19th, 2021 |

Meteosat-11 False Color RGB images [click to play animation | MP4]

Meteosat-11 False Color RGB images [click to play animation | MP4]

EUMETSAT Meteosat-11 False Color RGB images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the signature of a volcanic cloud associated with an eruption of Mount Etna on 19 February 2021. The brighter shades of red/magenta suggested the presence of ash within the volcanic cloud. This was supported by high values of retrieved Ash Loading (below).

Meteosat-11 Ash Loading product [click to play animation | MP4]

Meteosat-11 Ash Loading product [click to play animation | MP4]

A Meteosat-11 Ash Effective Radius Product (below) depicted rather large ash particles, generally in the 14-16 µm range.

Meteosat-11 Ash Effective Radius product [click to play animation | MP4]

Meteosat-11 Ash Effective Radius product [click to play animation | MP4]

A Meteosat-11 Ash Height product (below) showed retrieved values up to 12-13 km (magenta enhancement) for parts of the volcanic cloud.

Meteosat-11 Ash Height product [click to play animation | MP4]

Meteosat-11 Ash Height product [click to play animation | MP4]

Another version of Meteosat-11 False Color RGB images which use 8.7 µm data (below) revealed shades of green that indicated a higher concentration of SO2 within the southern portion of the volcanic cloud.

Meteosat-11 False Color RGB images [click to play animation | MP4]

Meteosat-11 False Color RGB images [click to play animation | MP4]

Cyclone Nivar makes landfall in India

November 25th, 2020 |

US Space Force EWS-G1 Infrared (10.7 µm) images [click to play animation | MP4]'

US Space Force EWS-G1 Infrared (10.7 µm) images [click to play animation | MP4]

US Space Force EWS-G1 Infrared (10.7 µm) images (above) showed Category 1 Cyclone Nivar making landfall along the southeastern coast of India on 25 November 2020.

EUMETSAT Meteosat-8 Infrared Window (10.8 µm) images with contours of deep-layer wind shear from the CIMSS Tropical Cyclones site (below) indicated that Nivar was moving through an environment of low shear (and over warm water) — factors favorable for the storm maintaining its intensity.

Meteosat-8 Infrared Window (10.8 µm) images, with contours of deep-layer wind shear [click to enlarge]

Meteosat-8 Infrared Window (10.8 µm) images, with contours of deep-layer wind shear [click to enlarge]