Smoke in the Gulf of Mexico

April 18th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with surface fronts plotted in cyan [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed some clearing of the dense pall of smoke across the far western Gulf of Mexico in the wake of a cold front that was moving southward/southeastward off the Texas coast on 18 April 2019. The parallel wave clouds of an undular bore were also evident ahead of the cold front from 13-16 UTC — the bore was also causing horizontal convective roll perturbations in the smoke about 20-40 miles ahead of the wave clouds (1506 UTC image).

The hazy signature of smoke was better defined in GOES-16 True Color Red-Green-Blue (RGB) images from the AOS site (below). This smoke was the result of widespread annual Springtime agricultural burning across southern Mexico, Guatemala, Belize and Honduras. Toward the end of the day, additional small plumes of smoke and blowing dust could  be seen moving back across the Gulf of Mexico into the “cleaner” air behind the cold front.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

Thermal anomalies or “hot spots” (yellow to red pixels) associated with the larger fires in Mexico, Guatemala, Belize and Honduras could be seen in GOES-16 Shortwave Infrared (3.9 µm) images (below).

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

A map of fires detected by Suomi NPP VIIRS on the previous day is shown below, as viewed using RealEarth.

Fires detected by Suomi NPP VIIRS on 17 April [click to enlarge]

Fires detected by Suomi NPP VIIRS on 17 April [click to enlarge]

Mesoscale disturbance over northern Alaska

April 17th, 2019 |

GOES-17

GOES-17 “Red” Visible (0.64 µm) and Low-level Water Vapor (7.3 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) “Red” Visible (0.64 µm) and Low-level Water Vapor (7.3 µm) images (above) showed a mesoscale disturbance that was moving northward over the eastern Brooks Range in far northeastern Alaska on 17 April 2019. The curved configuration of the associated cloud structure suggested that a closed circulation center was present (or had just recently developed) — while surface analyses showed an area of low pressure much farther to the south along the Alaska/Yukon border, there were no features moving northward across the region shown in the GOES-17 imagery.

Light to moderate snow was reported at Arctic Village as this mesoscale disturbance moved over the area (below).

Time series of surface weather observation data from Arctic Village [click to enlarge]

Time series of surface weather observations from Arctic Village [click to enlarge]

375-meter resolution Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 2131 and 2313 UTC (below) provided a more detailed view of this feature, in which the clouds exhibited an appearance suggestive of embedded convection. Cloud-top infrared brightness temperatures were as cold as -50ºC just southwest of Arctic Village on the 2313 UTC image — this corresponded to an altitude of 8.5 km on the 00 UTC Fairbanks rawinsonde data.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images at 2131 and 2313 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images at 2131 and 2313 UTC [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) images at 2131 and 2313 UTC [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) images at 2131 and 2313 UTC [click to enlarge]

13-km NAM model fields (below) showed no clear signature of either a closed circulation or a discrete vorticity center — so satellite imagery was depicting the presence of an important feature that was not captured by numerical models. While the 18 UTC model run did show an area of light precipitation moving northward toward the region, the 00 UTC model run scaled back the areal coverage of this precipitation.

3-km NAM 500 hPa height, wind and absolute vorticity [click to enlarge]

3-km NAM 500 hPa height, wind and absolute vorticity [click to enlarge]

3-km NAM Mean Sea Level Pressure and 1-hour accumulated precipitation [click to enlarge]

3-km NAM Mean Sea Level Pressure and 1-hour accumulated precipitation [click to enlarge]

Severe weather outbreak across eastern Texas and the Deep South

April 13th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

An outbreak of severe weather began in eastern Texas on the morning of 13 April 2019, where thunderstorms produced hail up to 3.0 inches in diameter, tornadoes and damaging winds (SPC storm reports). 1-minute Mesoscale Domain Sector GOES-16 “Red” Visible (0.64 µm) images (above) showed the clusters of thunderstorms that developed as a surface low and associated frontal boundaries moved eastward (surface analyses). The corresponding GOES-16 “Clean” Infrared Window (10.3 µm) images (below) revealed numerous overshooting tops with infrared brightness temperatures as cold as -70 to -75ºC. In addition, the storm producing 3.0-inch hail and damaging winds at 1428 UTC exhibited an Above-Anvil Cirrus Plume (Visible/Infrared toggle).

GOES-16 "Clean" Infrared Window (10.3 µm) images, with SPC storm reports plotted in purple [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in purple [click to play MP4 animation]

A comparison of Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at 1650 UTC is shown below.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Later in the day, the thunderstorms continued to produce a variety of severe weather as they moved eastward across Louisiana and Mississippi, as shown by GOES-16 Visible and Infrared images (below).

GOES-16 "Red" Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

GOES-16 "Clean" Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

After sunset, the thunderstorms continued to move eastward, spreading more serve weather across Mississippi into Alabama and far southern Tennessee (below).

GOES-16 "Clean" Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (below) provided additional views of the storms as they were moving across Mississippi and Alabama. Several bright lightning streaks were evident on the Day/Night Band images. Note: the NOAA-20 image (downloaded and processed from the Direct Broadcast ground station at CIMSS) is incorrectly labeled as Suomi NPP.

VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from NOAA-20 at 0645 UTC and Suomi NPP at 0734 UTC [click to enlarge]

On a NOAA-20 VIIRS Day/Night Band (0.7 µm) image at 0825 UTC (below), an impressively-long (~400 mile) dark “post-saturation recovery streak” extended southeastward from where the detector sensed an area of very intense/bright lightning activity northeast of Mobile, Alabama.

NOAA-20 VIIRS Day/Night Band (0.7 µm) image at 0825 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) image at 0825 UTC [click to enlarge]

Use Polar2Grid to create VIIRS True Color imagery over one State (Missouri)

April 11th, 2019 |

VIIRS True-Color Imagery over Missouri, 1942 UTC on 9 April 2019 (Click to enlarge)

Polar2Grid allows users to create true-color imagery from VIIRS (Visible Infrared Imaging Radiometer Suite) data from Suomi-NPP or NOAA-20. This tutorial will take you through the needed steps. Step one is to decide when you want the data; the ways to determine when a Polar Orbiter overflies a particular point are outlined in this blog post, that points to this website. For this blog post I’ve chosen Missouri. The image above shows a True-Color image over Missouri at about 19:42 UTC on 9 April 2019.

To create true-color imagery, Polar2Grid requires VIIRS M-Bands 3, 4 and 5 (Blue (0.48 µm), Green (0.55 µm) and Red (0.67 µm), respectively, all with 750-m resolution); click here for a list of all VIIRS bands). If the VIIRS I-Band 1 (at 0.64 µm) is present in the directory, then that image is used to sharpen the resultant image. Polar2Grid CREFL software also performs a simple atmospheric Rayleigh scattering removal; smoke and haze will still be apparent in the imagery, however.

To create the imagery above, first order the data from NOAA Class. (Steps to follow are shown here). Download the data into a unique directory. We are going to remap these data onto a map centered on Missouri, and for that to happen, Polar2Grid needs mapping parameters. These can be generated automatically with the p2_grid_helper.sh script that comes with Polar2Grid software. From the bin directory, I entered this command to put the grid parameters in a file .

/p2g_grid_helper.sh missouri -93.0 38.0 500 -500 2000 2000 > my_grids.txt

The line of data entered into that file is this:

missouri, proj4, +proj=lcc +datum=WGS84 +ellps=WGS84 +lat_0=38.000 +lat_1=38.000 +lon_0=-93.000 +units=m +no_defs, 2000, 2000, 500.000, -500.000, -99.055deg, 42.352deg

Now I’m ready to generate a true-color image (corrected ceflectance — crefl — imagery) with Polar2Grid, using this command:

./polar2grid.sh crefl gtiff –grid-configs /home/scottl/Polar2Grid/polar2grid_v_2_2_1/bin/my_grids.txt -g missouri -f /data-hdd/storage/Polar2GridData/09April/

The flags “–grid-configs <path to directory where file created by p2g_grid_help sits” and “-g map <name of map inside that file>” instruct to the Polar2Grid software to pull the mapping data for the defined grid out of the file. Otherwise, the data are in satellite projection. This polar2grid.sh invokation created a file named ‘j01_viirs_true_color_20190409_194226_missouri.tif’; I want to put a map on it so it is easier to georeference, and that is done using this shell in the Polar2Grid bin directory:

./add_coastlines.sh –add-borders –borders-resolution=f –borders-level=2 –borders-outline=’black’ j01_viirs_true_color_20190409_194226_missouri.tif

This adds a map to the image, then converts it to the png file (j01_viirs_true_color_20190409_194226_missouri.png) that is shown above.

After doing the same steps for a series of clear days in the midwest (09 March 2019, 15 March 2019, 21 March 2019, 26 March 2019, 31 March 2019), and annotating and concatenating the images in an animation, the greening up of Spring is apparent. See below.

NOAA-20 VIIRS True Color Imagery on select mostly clear days over the mid-Mississippi Valley, dates and times as indicated in the image (Click to enlarge)

Special shout-out to Dave Hoese, SSEC/CIMSS, for crafting software that is so easy to use to produce excellent satellite imagery.