Eruption of Mount Sinabung volcano

February 19th, 2018 |

Himawari-8 RGB images [click to play animation]

Himawari-8 RGB images [click to play animation]

An explosive eruption of Mount Sinabung began at 0153 UTC on 19 February 2018. Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the primary plume of high-altitude ash moving northwestward, with ash at lower altitudes spreading out to the south and southeast of the volcano.

Mutli-spectral retrievals of Ash Cloud Height (below) indicated that the explosive eruption injected volcanic ash to altitudes generally within the 12-18 km range, possibly reaching heights of 18-20 km. Advisories issued by the Darwin VAAC listed the ash height at 45,000 feet (13.7 km).

Himawari-8 Ash Height product [click to play animation]

Himawari-8 Ash Height product [click to play animation]

Ash Loading values (below) were also very high within the high-altitude portion of the plume.

Himawari-8 Ash Loading product [click to play animation]

Himawari-8 Ash Loading product [click to play animation]

The Ash Effective Radius product (below) indicated that very large particles were present in the portion of the plume immediately downwind of the eruption site.

Himawari-8 Ash Effective Radius product [click to play animation]

Himawari-8 Ash Effective Radius product [click to play animation]

In a comparison of Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.4 µm) images (below), note the very pronounced warm thermal anomaly or “hot spot” (large cluster of red pixels) on the 0150 UTC image — Himawari-8 was actually scanning that location at 01:54:31 UTC, just after the 0153 UTC eruption. Prior to the main eruption (beginning at 0120 UTC), a very narrow volcanic cloud — likely composed primarily of condensed steam — was seen streaming rapidly southward from the volcano summit.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.4 µm, right) images [click to play Animated GIF | MP4 also available]

The coldest Himawari-8 cloud-top infrared brightness temperature was -73 ºC at 0300 UTC, which roughly corresponded to an altitude of 15 km on nearby WIMM (Medan) rawinsonde data at 00 UTC (below).

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

A Terra MODIS True-color RGB image viewed using RealEarth is shown below. The actual time of the Terra satellite overpass was 0410 UTC.

Terra MODIS True-color RGB image [click to enlarge]

Terra MODIS True-color RGB image [click to enlarge]

An animation of Himawari-8 True-color RGB images can be seen here.

Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Temporary transition from Himawari-8 to Himawari-9

February 13th, 2018 |

Himawari-8 and Himawari-9

Himawari-8 and Himawari-9 “Clean” Infrared Window (10.4 µm) images [click to play Animated GIF | MP4 also available]

Himawari-9 temporarily took over for Himawari-8 beginning at 0250 UTC on 13 February 2018, as Himawari-8 underwent a 2-day scheduled maintenance. “Clean” Infrared Window (10.3 µm) images of Category 4 Cyclone Gita in the South Pacific Ocean during the satellite transition is shown above.

Himawari-9 was launched on 02 November 2016.

Cyclone Gita in the South Pacific Ocean

February 12th, 2018 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.4 µm, bottom) images, with hourly plots of surface reports [click to play Animated GIF | MP4 also available]

Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images (above) showed Cyclone Gita as it moved toward Tonga in the South Pacific Ocean during 11 February – 12 February 2018. The tropical cyclone reached Category 4 intensity (ADT | SATCON) near the end of the animation period.

A longer animation of Himawari-8 Infrared images (below) revealed that the center of Gita moved just south of the main island of Tongatapu. Surface observations from Fua’Amotu (NFTF) ended after 0735 UTC.

Himawari-8

Himawari-8 “Clean” Infrared Window (10.4 µm) images, with hourly surface plots [click to play Animated GIF | MP4 also available]

MIMIC-TC morphed microwave imagery (below) showed that Gita underwent an eyewall replacement cycle after moving to the southwest of Tongatapu — a small eyewall was replaced by a larger eyewall, which was very apparent in DMSP SSMIS Microwave (85 GHz) images at 1533 and 1749 UTC.

MIMIC-TC morphed microwave imagery

MIMIC-TC morphed microwave imagery

Metop ASCAT scatterometer surface winds (below) showed Gita around the time that the storm center was just south of Tongatapu at 0850 UTC.

Metop ASCAT scatterometer surface winds [click to enlarge]

Metop ASCAT scatterometer surface winds [click to enlarge]