Tropical Invest 97L in the western Atlantic Ocean

September 29th, 2014
GOES-13 0.63 µm visible channel images with METAR surface reports (click to play animation)

GOES-13 0.63 µm visible channel images with METAR surface reports (click to play animation)

Tropical Invest 97L formed near Bermuda during the pre-dawn hours on 29 September 2014. After sunrise, AWIPS II images of GOES-13 0.63 µm visible channel data (above; click image to play animation) revealed a well-defined low-level circulation spinning just to the west of Bermuda. It is interesting to note that at 12:55 UTC a waterspout was reported 4 km to the east of the Bermuda International Airport (station identifier TXKF), associated with a band of deep convection that was moving northward (below).

GOES-13 0.63 µm visible channel image with Bermuda METAR observation

GOES-13 0.63 µm visible channel image with Bermuda METAR observation

An overpass of a Metop satellite at 14:38 UTC provided a good view of the surface wind field with data from the ASCAT scatterometer instrument (below). There was one wind vector with a speed around 30 knots (green) just to the east of the center of circulation.

GOES-13 0.63 µm visible channel image with Metop ASCAT scatterometer surface winds

GOES-13 0.63 µm visible channel image with Metop ASCAT scatterometer surface winds

A comparison of Terra MODIS 0.65 µm visible channel and 11.0 µm IR channel images at 15:25 UTC (below) showed that the coldest cloud-top IR brightness temperatures of -55º C (orange color enhancement) were located to the north of the circulation center.

Terra MODIS 0.65 µm visible channel and 11.0 µm IR channel images

Terra MODIS 0.65 µm visible channel and 11.0 µm IR channel images

Strong early-season storm in the North Pacific

September 23rd, 2014
GOES-15 6.5 µm IR channel images (click to play animation)

GOES-15 6.5 µm IR channel images (click to play animation)

The GOES-15 6.5 µm water vapor channel imagery above showed the development and evolution of a strong mid-latitude cyclone in the eastern North Pacific Basin during the 21-23 September 2014 time period; of particular interest was the development of strong subsidence behind the storm (depicted by brighter shades of yellow), and also a second jet starting to approach the storm from the west (as evidenced by increasing cold cloud tops in the base of the trough at the end of the animation). A closer view of the storm using AWIPS II imagery is available here. The strong storm had access to abundant sub-tropical moisture, as depicted in the MIMIC Total Precipitable Water animation below.

MIMIC Total Precipitable Water (click to enlarge)

MIMIC Total Precipitable Water (click to enlarge)

The ASCAT Scatterometer that flies on METOP gives routine observations of surface winds over the ocean. A large area of storm-force winds (in red) was depicted in the image below (from 0630 UTC on 23 September), overlain on the GOES-15 Water Vapor imagery.

 GOES-15 6.5 µm water vapor channel image and ASCAT winds, 0630 UTC on 23 September (click to enlarge)

GOES-15 6.5 µm water vapor channel image and ASCAT winds, 0630 UTC on 23 September (click to enlarge)

A comparison of 4-km resolution GOES-15 6.5 µm and 1-km resolution Aqua MODIS 6.7 µm water vapor channel images at 11:30 UTC, below, demonstrated the benefit of higher spatial resolution for providing a more accurate display of the water vapor gradients and various small-scale features (such as transverse banding associated with cold clouds to the north of the storm), along with the polar-orbiter image elimination of geostationary parallax error for more more precise feature location.

GOES-15 6.5 µm and Aqua MODIS 6.7 µm water vapor channel images

GOES-15 6.5 µm and Aqua MODIS 6.7 µm water vapor channel images

The GOES sounder Total Column Ozone product, below, showed an increase in ozone values (350-380 Dobson Units, darker green to lighter green color enhancement) as the tropopause was lowered in the vicinity of the deepening mid-latitude cyclone.

GOES sounder Total Column Ozone product (click to play animation)

GOES sounder Total Column Ozone product (click to play animation)

A Suomi NPP VIIRS true-color image from the SSEC RealEarth web map server, below, provided a good view of the lower-level clouds associated with the storm.

Suomi NPP VIIRS true-color image

Suomi NPP VIIRS true-color image

For a more detailed analysis of this event from the Ocean Prediction Center perspective, see the Satellite Liaison Blog.

Tropical Storm Dolly in the southern Gulf of Mexico

September 2nd, 2014
Suomi NPP VIIRS Day Night Band (0.70 µm) image (click to enlarge)

Suomi NPP VIIRS Day Night Band (0.70 µm) image (click to enlarge)

Tropical Storm Dolly has formed in the western Gulf of Mexico. The Suomi NPP VIIRS Day Night Band imagery, above, shows the exposed low-level swirl of the storm (then still a tropical depression). North-northwesterly shear (shown here, from this site) means the deep convection (shown below) is displaced to the east of south of the the low-level circulation (click here for a toggle between the Day Night Band and the 11.45µm imagery). Cloud-top IR brightness temperatures from VIIRS were as cold as -87º C. ASCAT winds from 0230 UTC show a region of tropical storm-force winds associated with convection east and north of the circulation center.

Suomi NPP VIIRS Infrared (11.45 µm) image (click to enlarge)

Suomi NPP VIIRS Infrared (11.45 µm) image (click to enlarge)

Early-morning visible imagery from GOES-13, below, shows the large area of convection over the southern Gulf. The NHC-reported positions of the storm at 0900 UTC and 1500 UTC (22.6º N, 94.8º W and 23.4º N, 96.5º, respectively) are indicated by the red boxes on the images. Strong convection just south of the surface circulation developed at sunrise, obscuring the low-level swirl. That strong convection is especially apparent in the GOES-13 10.7 imagery, at bottom. GOES IR Brightness Temperatures were as cold as -84º C in the animation. (For more on Dolly from the National Hurricane Center, see this link).

GOES-13 Visible Imagery (0.63 µm) (click to animate)

GOES-13 Visible Imagery (0.63 µm) (click to animate)

GOES-13 Infrared Imagery (10.7 µm) (click to animate)

GOES-13 Infrared Imagery (10.7 µm) (click to animate)

The effect of wind shear on Tropical Storm Karina

August 24th, 2014
GOES-15 0.63 µm visible channel  images (click to play Animated GIF)

GOES-15 0.63 µm visible channel images (click to play Animated GIF)

GOES-15 0.63 µm visible channel images (Animated GIF | MP4 movie | YouTube video | QuickTime movie) showed the decoupling of the upper-level and lower-level circulations of Tropical Storm Karina in the East Pacific Ocean on 24 August 2014. This decoupling was caused by strong wind shear along the western periphery of Category 5 Hurricane Marie, which was located to the east-southeast of Karina (large-scale view). Kudos to Dennis Chesters (NASA/Goddard) for bringing this interesting case to our attention (and providing the QuickTime movie linked to above).

The corresponding GOES-15 10.7 µm IR channel images (Animated GIF | MP4 movie | YouTube video) showed the cold clouds (red to black to white to purple color enhancement) associated with the upper-level circulation moving northward and quickly dissipating; the signature of the warmer clouds (darker cyan color enhancement) associated with the lower-level circulation can also be seen emerging from beneath the cold cloud shield and moving eastward.

GOES-15 10.7 µm IR channel images (click to play Animated GIF)

GOES-15 10.7 µm IR channel images (click to play Animated GIF)

A closer view provided by a Suomi NPP VIIRS true-color Red/Green/Blue (RGB) image from the SSEC RealEarth web map server (below) showed the separation of the upper-level and lower-level circulations around 21:53 UTC.

Suomi NPP VIIRS true-color RGB image

Suomi NPP VIIRS true-color RGB image

A sequence of 4 images (15, 18, 21, and 00 UTC) from the CIMSS Tropical Cyclones site (below) shows GOES-15 6.5 µm water vapor channel images with overlays of deep-layer wind shear (derived from satellite winds). To the east of Karina (which was located in the center of the images), the large anticylcone aloft associated with Category 5 Hurricane Marie can be seen, with increasing vales of southeasterly wind shear moving over Karina.

GOES-15 6.5 µm water vapor images with overlays of deep layer wind shear

15 UTC GOES-15 6.5 µm water vapor images with overlays of deep layer wind shear

The 3 image comparisons below show the separation of the centers of upper-level divergence (yellow) and lower-level convergence (cyan) as the decoupling process was occurring at 18 UTC, 21 UTC, and 00 UTC.

18 UTC GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

18 UTC: GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

21 UTC: GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

21 UTC: GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

00 UTC: GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

00 UTC: GOES-15 6.5 µm water vapor image with upper-level divergence (yellow) and GOES-15 10.7 µm IR image with lower-level convergence (cyan)

===== 25 August Update =====

GOES-15 0.63 µm visible channel images, with Metop ASCAT surface scatterometer winds

GOES-15 0.63 µm visible channel images, with Metop ASCAT surface scatterometer winds

Even though the southeastward-moving low-level circulation of Karina had been downgraded to a Tropical Depression with 30 knot winds, there was still an impressive burst of convection just west of the center as it began to move back over warmer water on 25 August. Metop ASCAT surface scatterometer winds (above) showed a small pocket of winds in the 30.0-39.9 knot range (green wind barbs) at 18:29 UTC.

There were also some Tropical Overshooting Top (TOT) targets detected within the convective burst (below); TOT symbols: Red = 0-1 hour previous, Green = 1-2 hours previous, Blue = 2-3 hours previous.

GOES-15 Infrared - Water Vapor difference product, and Tropical Overshooting Tops product (TOT symbols: Red = 0-1 hour previous, Green = 1-2 hours previous, Blue = 2-3 hours previous)

GOES-15 Infrared – Water Vapor difference product, and Tropical Overshooting Tops product (TOT symbols: Red = 0-1 hour previous, Green = 1-2 hours previous, Blue = 2-3 hours previous)