Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Cyclone Gita in the South Pacific Ocean

February 12th, 2018 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.4 µm, bottom) images, with hourly plots of surface reports [click to play Animated GIF | MP4 also available]

Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images (above) showed Cyclone Gita as it moved toward Tonga in the South Pacific Ocean during 11 February – 12 February 2018. The tropical cyclone reached Category 4 intensity (ADT | SATCON) near the end of the animation period.

A longer animation of Himawari-8 Infrared images (below) revealed that the center of Gita moved just south of the main island of Tongatapu. Surface observations from Fua’Amotu (NFTF) ended after 0735 UTC.

Himawari-8

Himawari-8 “Clean” Infrared Window (10.4 µm) images, with hourly surface plots [click to play Animated GIF | MP4 also available]

MIMIC-TC morphed microwave imagery (below) showed that Gita underwent an eyewall replacement cycle after moving to the southwest of Tongatapu — a small eyewall was replaced by a larger eyewall, which was very apparent in DMSP SSMIS Microwave (85 GHz) images at 1533 and 1749 UTC.

MIMIC-TC morphed microwave imagery

MIMIC-TC morphed microwave imagery

Metop ASCAT scatterometer surface winds (below) showed Gita around the time that the storm center was just south of Tongatapu at 0850 UTC.

Metop ASCAT scatterometer surface winds [click to enlarge]

Metop ASCAT scatterometer surface winds [click to enlarge]

Storm-force low in the central Atlantic Ocean

January 29th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

The compact circulation of an occluded surface low over the central Atlantic Ocean could be seen on GOES-16 (GOES-East) “Red” Visible (0.64 µm) images on 29 January 2018 (above); surface analyses indicated that the system was producing Storm Force (48-55 knot) winds.

This surface low was located beneath a larger upper-level low, as seen on GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below). Very dry air (yellow to red enhancement) was evident just to the south and southwest of the storm.

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm) images [click to play MP4 animation]

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) images [click to play MP4 animation]

Hourly images of a (preliminary, non-operational) GOES-16 Deep-Layer Wind Shear product (calculated using Low-level and Mid-upper level GOES-16 Derived Motion Winds) are shown below — they revealed that the surface low was protected within the favorable low-shear environment of the upper low circulation, with more unfavorable high values of shear immediately surrounding it.

GOES-16 Deep-layer Wind Shear products [click to play animation]

GOES-16 Deep-layer Wind Shear products [click to play animation]

Explosive cyclogenesis off the East Coast of the United States

January 4th, 2018 |

GOES-16 Clean Window (10.3 µm) Imagery, 0102-1337 UTC on 4 January 2018 (Click to animate)

A strong extratropical cyclone that deposited snow in the deep south developed explosively during the early morning hours of 4 January 2018. The GOES-16 Clean Window (10.3 µm) animation, above, from 0102 – 1337 UTC on 4 January, brackets the explosive development: from 993 hPa at 0000 UTC to 968 mb at 0900 UTC, a strengthening that easily meets the “Bomb” criteria set forth by Sanders and Gyakum (1980). The Clean Window animation shows the strong surface circulation with well-defined conveyor belts. Convection develops at the leading edge of the dry slot that is approaching southern New England at the end of the animation. The Low-Level Water Vapor (7.3 µm) animation for the same time, below, suggests very strong descent behind the storm, where brightness temperatures warmer than -10º C (orange in the enhancement used) are widespread.

GOES-16 Low-Level Water Vapor (7.3 µm) Infrared Imagery, 0102-1332 UTC on 4 January 2018 (Click to animate)

This storm can also be viewed using Red-Green-Blue composites (in addition to the single-channel animations shown above). The Airmass RGB, below, combines the Split Water Vapor Difference (6.2 µm – 7.3 µm) as Red, Split Ozone (9.6 µm – 10.3 µm) as Green, and Upper level Water Vapor (6.2 µm) as Blue. (Other storms analyzed with the Airmass RGB can be seen here, here, and here). The strong red signal in the Airmass RGB south of the storm suggests very strong sinking motion.

GOES-16 AirMass RGB Product, 0102-1332 UTC (Click to animate)

ASCAT Scatterometer winds over the system at 0205 UTC showed an elongated surface circulation with multiple observations of winds exceeding 50 knots (in red), and a large region (in yellow) of winds exceeding 35 knots.

GOES-16 ABI Clean Window (10.3 µm) and ASCAT Scatterometer winds, 0205 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Red Visible (0.64 µm) and ASCAT Scatterometer winds, 1520 UTC on 4 January 2018 (Click to enlarge)

The 1520 UTC ASCAT pass, above, sampled half the storm, and hurricane-force winds were indicated.

The snow that was deposited in the Deep South by this storm (also discussed here) persisted through a cold night and was visible in the GOES-16 Visible (0.64 µm) imagery, below. Highly reflective snow can be difficult in a still image to distinguish from clouds — but the Snow/Ice Channel on GOES-16 (1.61 µm) detects energy at a wavelength that is strongly absorbed by ice. Thus, snow (and ice) on the ground (or in clouds), has a different representation. (Here are toggles between the two images, with and without a map). The snow cover over coastal Georgia, South and North Carolina appears dark in the Snow/Ice channel because the snow is absorbing, not reflecting, the 1.61 µm radiation.  It is noteworthy that the 1.61 µm image is especially dark over far southeastern Georgia northeastward along the immediate coastline of South Carolina.  These are regions where freezing rain and sleet fell, versus predominantly snow to the north and west (as also noted here; The National Weather Service in Tallahassee tweeted out an ice/snow accumulation map that also agrees with the 1.61 µm image).  Ice in the cirrus clouds northeast of North Carolina is also apparent in the Snow/Ice 1.61 µm imagery.

GOES-16 Band 2 Visible (0.64 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Band 5 Snow/Ice (1.61 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

Suomi NPP overflew the storm shortly after midnight on 4 January; Day Night band visible imagery (courtesy Kathleen Strabala, CIMSS), below, shows a well-developed cyclone covering much of the northeast Atlantic Ocean. Snow cover is apparent over the deep south of the United States.

Suomi NPP Day Night Band Visible (0.7 µm) Imagery, 0614 UTC on 4 January 2018 (Click to enlarge)

(Added, 5 January 2018: This website shows a during-the-day CIMSS True Color Image animation of the storm on 4 January 2018. Animation courtesy Dave Stettner, CIMSS).