Transitory Solar Reflectance in GOES-R Series Imagery

March 5th, 2018 |

GOES-16 Visible (0.64 µm) animation, 1637-1732 UTC on 5 March 2018 (Click to enlarge)

Animations of GOES-16 Visible, near-Infrared and shortwave Infrared over North America shortly before the Vernal Equinox, and shortly after the Autumnal Equinox, (that is, when the Sun is overhead in the Southern Hemisphere) show bright spots that propagate quickly from west to east (these features were first noted by Frank Alsheimer of the National Weather Service). The animation above shows the visible imagery (0.64 µm) over the Continental United States on 5 March 2018 (Click here for a slower animation speed). Brightening over regions between 30 and 40 N between 1637 UTC and 1732 UTC is apparent. The animation below of the shortwave infrared (3.9 µm) shows slight warming (Click here for a slower animation), as might be expected with reflected solar energy. The brightening is also apparent in the Band 4 “Cirrus”  (1.37 µm) — in fact, a closer look at southern Colorado reveals the bright signature of sunlight reflecting off solar panels at the Alamosa Solar Generating Facility (Google maps).

GOES-16 Shortwave Infrared (3.9 µm) animation, 1637-1732 UTC on 5 March 2018 (Click to enlarge)

The increased reflectance can cause the ABI Clear Sky Mask to mis-characterize clear regions as cloudy (See the animation below; click here for a slower animation). Thus, Cloud properties (Cloud-top Height, Temperature, Pressure, etc.) can be identified in clear regions.

GOES-16 Clear Sky Mask (White: Clouds ; Black : No Clouds) from 1637 UTC – 1732 UTC on 5 March 2018 (Click to enlarge)

The bright spots in the visible, and warms spots in the shortwave infrared, occur when the Earth’s surface, the GOES Satellite and the Sun are aligned on one line. If you were within the bright spot with a powerful telescope trained on the Sun, you would see the GOES Satellite transecting the solar disk. The location of these bright spots changes with season: they appear in the Northern Hemisphere shortly before the (Northern Hemisphere) vernal equinox and shortly after the (Northern Hemisphere) autumnal equinox. Similarly, they appear in the Southern Hemisphere shortly before the (Southern Hemisphere) vernal equinox and shortly after the (Southern Hemisphere) autumnal equinox. On the Equinox, the bright spots are centered on the Equator.

This animation (courtesy Daniel Lindsey, NOAA/CIRA and Steve Miller, CIRA) shows where the reflection disk moves during the days around the Northern Hemisphere Autumnal Equinox; a similar animation for the Northern Hemisphere vernal equinox would show a disk starting at the North Pole and moving southward with time.

The animation below (from this link that is used for calibration exercises), shows the difference in reflectance (Bands 1-6) or Brightness Temperature (Bands 7-16) between 1657 and 1652 UTC on 3 and 5 March 2018. Two things are apparent: The centroid of the largest difference in solar reflectance has moved southward in those two days, as expected; the effect of this solar backscatter is most obvious in the visible, near-infrared and shortwave infrared channels (that is, bands 1-7 on the ABI).  The effect is most pronounced in clear skies.

Time Difference in each of the 16 ABI Channels (1657 – 1652 UTC) on 3 and on 5 March 2018 (Click to enlarge)

This reflectance feature is also detectable in legacy GOES Imagery. However, the great improvements in detection and calibration in the GOES-R Series ABI (and AHI on Himawari-8 and Himawari-9) and the better temporal resolution with the GOES-R Series allows for better visualization of the effect.

The feature also shows up in “True Color” Imagery, shown below (from this site). Geocolor imagery (shown here), from CIRA, also shows the brightening.

CIMSS Natural True Color Animation ending 1757 UTC on 5 March 2018 (Click to enlarge)

Thanks to Daniel Lindsey and Tim Schmit, NOAA/ASPB, Steve Miller, CIRA and Mat Gunshor, CIMSS, for contributions to this blog post.

Eruption of Mount Sinabung volcano

February 19th, 2018 |

Himawari-8 RGB images [click to play animation]

Himawari-8 RGB images [click to play animation]

An explosive eruption of Mount Sinabung began at 0153 UTC on 19 February 2018. Himawari-8 False-color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the primary plume of high-altitude ash moving northwestward, with ash at lower altitudes spreading out to the south and southeast of the volcano.

Mutli-spectral retrievals of Ash Cloud Height (below) indicated that the explosive eruption injected volcanic ash to altitudes generally within the 12-18 km range, possibly reaching heights of 18-20 km. Advisories issued by the Darwin VAAC listed the ash height at 45,000 feet (13.7 km).

Himawari-8 Ash Height product [click to play animation]

Himawari-8 Ash Height product [click to play animation]

Ash Loading values (below) were also very high within the high-altitude portion of the plume.

Himawari-8 Ash Loading product [click to play animation]

Himawari-8 Ash Loading product [click to play animation]

The Ash Effective Radius product (below) indicated that very large particles were present in the portion of the plume immediately downwind of the eruption site.

Himawari-8 Ash Effective Radius product [click to play animation]

Himawari-8 Ash Effective Radius product [click to play animation]

In a comparison of Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.4 µm) images (below), note the very pronounced warm thermal anomaly or “hot spot” (large cluster of red pixels) on the 0150 UTC image — Himawari-8 was actually scanning that location at 01:54:31 UTC, just after the 0153 UTC eruption. Prior to the main eruption (beginning at 0120 UTC), a very narrow volcanic cloud — likely composed primarily of condensed steam — was seen streaming rapidly southward from the volcano summit.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.4 µm, right) images [click to play Animated GIF | MP4 also available]

The coldest Himawari-8 cloud-top infrared brightness temperature was -73 ºC at 0300 UTC, which roughly corresponded to an altitude of 15 km on nearby WIMM (Medan) rawinsonde data at 00 UTC (below).

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

Medan, Indonesia rawinsonde data at 00 UTC on 19 February [click to enlarge]

A Terra MODIS True-color RGB image viewed using RealEarth is shown below. The actual time of the Terra satellite overpass was 0410 UTC.

Terra MODIS True-color RGB image [click to enlarge]

Terra MODIS True-color RGB image [click to enlarge]

An animation of Himawari-8 True-color RGB images can be seen here.

Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Temporary transition from Himawari-8 to Himawari-9

February 13th, 2018 |

Himawari-8 and Himawari-9

Himawari-8 and Himawari-9 “Clean” Infrared Window (10.4 µm) images [click to play Animated GIF | MP4 also available]

Himawari-9 temporarily took over for Himawari-8 beginning at 0250 UTC on 13 February 2018, as Himawari-8 underwent a 2-day scheduled maintenance. “Clean” Infrared Window (10.3 µm) images of Category 4 Cyclone Gita in the South Pacific Ocean during the satellite transition is shown above.

Himawari-9 was launched on 02 November 2016.