Year-long Animations of Visible and Infrared Images

March 26th, 2020 |

True-color visible imagery global montage from 6 March 2019 – 5 March 2020 (Click to launch containerized YouTube Vide)

A previous blog post (here) has shown 1-month animations of true-color visible imagery from geostationary satellites (GOES-16, GOES-17, Himawari-8, Meteosat-11 and others) wherein local noon longitudinal strips are blended together to create a global view. (Imagery courtesy Rick Kohrs, SSEC) (See also this blog post for an explanation). The animation above (Click it to view a YouTube animation within a container) shows visible true-color imagery for each day from 6 March 2019 through 5 March 2020.

The infrared imagery below combines the ‘clean window’ Band 13 channel on GOES-16 and GOES-17 (10.3 µm on both) with Band 13 on Himawari-8 (10.4 µm) and shows 2019 data at 6-h intervals.

Color-enhanced Window Channel infrared (ABI: 10.3 µm; AHI: 10.4 µm) imagery from 2019 (Click to launch containerized YouTube Vide)

Cyclone Damien makes landfall in Western Australia

February 8th, 2020 |

Himawari-8

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

2.5-minute rapid scan JMA Himawari-8 “Clean” Infrared Window (10.4 µm) images (above) showed Cyclone Damien making landfall as a Category 2 storm in Western Australia on 08 February 2020. Well west of the storm center, winds gusted to 49 knots at Barrow Island (YBWX). The eye remained intact for several hours after Damien moved inland.

GCOM-W1 AMSR2 Microwave (85 GHz) imagery from the CIMSS Tropical Cyclones site (below) showed the eye at 1710 UTC.

GCOM-W2 AMSR2 Microwave (85 GHz) image [click to enlarge]

GCOM-W2 AMSR2 Microwave (85 GHz) image [click to enlarge]

Just prior to landfall. cloud-top gravity waves were evident in VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, as viewed using RealEarth (below).

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]


Tropical Storm Damien was also seen in the first-light image from Russia’s Elecro-L3 satellite, a few hours before Damien reached Category 1 hurricane intensity.

Pyrocumulonimbus clouds in Australia

February 1st, 2020 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left), Shortwave Infrared (3.9 µm, center) and Infrared Window (10.4 µm, right) images [click to play animation | MP4]

2.5-miute Rapid Scan JMA Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and Infrared Window (10.4 µm) images (above) showed the formation of 2 small, fairly short-lived pyrocumulonimbus (pyroCb) clouds spawned by large, hot bushfires in southern New South Wales, Australia on 01 February 2020. The pyroCb clouds developed in advance of an approaching cold front (surface analyses), exhibiting 10.4 µm cloud-top infrared brightness temperatures in the -40 to -49ºC range (shades of blue). The first pyroCb formed at at 0311 UTC to the northeast of Cooma (YCOM), with the second formed at 0559 UTC just southwest of Merimbula (YMER).

NOAA-20 VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images at 0426 UTC as viewed using RealEarth (below) revealed cloud-top infrared brightness temperatures near -60ºC (darker red enhancement).

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images at 042 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images at 0426 UTC [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC or 1:54 am AEDT (below) displayed the nighttime glow and hot thermal signatures of large bushfires south and southeast of Canberra.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 1454 UTC (credit: William Straka, CIMSS) [click to enlarge]

Tropical Cyclone Tino in the South Pacific Ocean

January 16th, 2020 |

Himawari-8

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

JMA Himawari-8 “Clean” Infrared Window (10.4 µm) images (above) showed the development of Tropical Cyclone Tino in the South Pacific Ocean on 16 January 2020. Tino was moving southeast toward the island nation of Fiji. Convection around the tropical cyclone exhibited extensive cloud-top infrared brightness temperatures (IRBTs) of -90ºC and colder (shades of yellow embedded within the dark purple enhancement), including a few red -100ºC pixels at 1630 UTC.

Plots of rawinsonde data from Fiji (below) showed a tropopause around 100 hPa, where the temperature was around -85ºC — so the tropical overshooting tops with IRBTs in the -90 to -100ºC range were extending into the stratosphere.

Plots of rawinsonde data from Fiji [click to enlarge]

Plots of rawinsonde data from Nandi, Fiji [click to enlarge]

Plots of deep-layer wind shear from the CIMSS Tropical Cyclones site (below) indicated that Tino gradually intensified within a narrow zone of light shear.

Plots of deep-layer wind shear [click to enlarge]

Plots of deep-layer wind shear [click to enlarge]

===== 17 January Update =====

GOES-17

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

A GOES-17 (GOES-West) Mesoscale Domain Sector was positioned over Tropical Cyclone Tino on 17 January, providing images at 1-minute intervals — “Clean” Infrared Window (10.35 µm) images (above) showed the continued development of convective bursts, which at times exhibited IRBT values as cold as -100ºC (red pixels on the coldest portion of the enhancement).