Satellite signatures of a “sting jet”

January 4th, 2018 |

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

Satellite signatures of a phenomenon known as a “sting jet” have been shown previously on this blog here, here and here. GOES-16 (GOES-East) Lower-level (7.3 µm) Water Vapor images (above) revealed another classic example of the “scorpion tail” signature of a sting jet associated with the rapidly-intensifying storm off the coast of North Carolina on 04 January 2018.

The passenger cruise ship Norwegian Breakaway was en route to New York City from the Bahamas when it experienced very strong winds and rough seas early in the morning on 04 January (media story) — it appears as though the ship may have been in the general vicinity of this sting jet feature (ship data), where intense winds were descending to the surface from higher levels of the atmosphere:

A comparison of GOES-16 (GOES-East) and GOES-13 Water Vapor images (below) demonstrated how the GOES-16 improvement in spatial resolution  (2 km at satellite sub-point, vs 4 km for GOES-13) and more frequent imaging (routinely every 5 minutes over the CONUS domain, vs 15-30 minutes for GOES-13) helped to better follow the evolution of the sting jet feature. The 2 known locations of the Norwegian Breakaway around the time period of the image animation are plotted in red.

"Water

Water Vapor images from GOES-16 (6.9 µm, left) and GOES-13 (6.5 µm, right), with the 2 known locations of the Norwegian Breakaway plotted in red [click to play MP4 animation]

The sting jet signature was also apparent on GOES-16 Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

In addition, the sting jet signature was evident in a Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 0614 UTC or 1:14 AM Eastern time (below). Through the clouds, the faint glow of city lights in far eastern North Carolina could be seen along the left edge of the image. The cloud features shown using the “visible image at night” VIIRS Day/Night Band were brightly-illuminated by the Moon, which was in the Waning Gibbous phase at 92% of Full. A VIIRS instrument is aboard the JPSS series of satellites, such as the recently-launched NOAA-20.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Another view of the sting jet signature was seen in a 250-meter resolution Aqua MODIS Infrared Window (11.0 µm) image at 0725 UTC (below).

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Possible Sting Jet Associated with strong storm in Europe

October 28th, 2013 |
Meteosat-10 6.2 µm WV channel images (click to play animation)

Meteosat-10 6.2 µm WV channel images (click to play animation)

Sting jets are wind maxima near the end of bent-back fronts in cases of strong cyclones. As noted earlier on this blog, they can acquire a characteristic look in water vapor imagery, vaguely reminiscent of a scorpion’s stinger. In addition, strongly sinking air around the jet, usually associated with both a tropopause fold and a maximum in ozone, is manifest as a warm (dry) patch in the water vapor (WV) imagery. In the animation above, the sting jet is apparent moving across northern Denmark into southern Sweden between 1500 and 1800 UTC. This is in association with the ‘St. Jude’ storm that killed more than a dozen across northern Europe (Reuters news story).

The strong sinking near a sting jet can transport momentum down to the surface. You should therefore expect to see strong surface wind gusts near the water vapor satellite signature, and that was the case on October 28, as shown below.

Hourly Meteosat-10 6.2 µm WV channel images and Observed Surface Wind Gusts (click to play animation)

Hourly Meteosat-10 6.2 µm WV channel images and Observed Surface Wind Gusts (click to play animation)

Suomi/NPP viewed this storm early in the day on 28 October. The toggle between the VIIRS Day/Night Band and the 11.45 µm IR data, below, shows a developing baroclinic leaf over the British Isles.

Toggle between VIIRS Day/Night Band and 11.45 µm IR imagery at 0220 UTC on 28 October (click to enlarge)

Toggle between VIIRS Day/Night Band and 11.45 µm IR imagery at 0220 UTC on 28 October (click to enlarge)

A comparison of Aqua MODIS 0.65 µm visible, 11.0 µm IR, and 6.7 µm water vapor channel images visualized using the SSEC Web map Server (below; courtesy of Russ Dengel and Kathy Strabala, SSEC) showed the storm at 12:14 UTC on 28 October. The warm/dry signature of strongly-subsiding middle to lower tropospheric air was particularly evident on the water vapor image (yellow to orange color enhancement) as it was beginning to move eastward over Denmark.

Aqua MODIS 0.65 µm visible, 11.0 µm IR, and 6.7 µm water vapor channel images

Aqua MODIS 0.65 µm visible, 11.0 µm IR, and 6.7 µm water vapor channel images

For additional satellite images of this event, see the EUMETSAT Image Library and the Wide World of SPoRT.

Possible Sting Jet in Upper Midwest

March 12th, 2012 |
GOES-13 6.5 µm water vapor channel images (click image to play animation)

GOES-13 6.5 µm water vapor channel images (click image to play animation)

The water vapor animation from GOES-East on March 12th shows a structure rotating through the upper-level trough, which structure looks very much like a so-called “Sting Jet”. (In the animation above, the sting jet structure crosses the Missouri/Kansas border south of Kansas City, propagates across northern Missouri and eastern Iowa before moving northward into Wisconsin). (A more obvious Sting Jet event is discussed here; A Monthly Weather Review article on Sting Jets is here).

RUC wind analyses show that the sting jet structure was associated with a wind maximum on the 315 Kelvin isentropic surface. This Loop shows the maximum moving from northeastern Missouri into Central Wisconsin between 1000 and 1400 UTC on March 12th. Stability in the lower troposphere on March 12th (as suggested by this sounding from the Quad Cities in Iowa/Illinois) was strong enough to inhibit vertical mixing of stronger upper-tropospheric air down towards the surface. The circulation around the jet was sufficient, however, to generate showers over the upper Midwest, as shown in this loop.

MODIS 6.5 µm water vapor channel image

MODIS 6.5 µm water vapor channel image

MODIS water vapor imagery, above, from 0841 UTC on 12 March shows the sting jet structure in north-central Missouri, and curving back to central Nebraska and central South Dakota.

GOES-13 0.63 µm visible image

GOES-13 0.63 µm visible image

(Added 13 March: SPC Storm Reports show a rare March tornado north of I-69 in lower Michigan. The visible imagery above, bracketing the observed time of the tornado (near the yellow box), shows a strong thunderstorm. By this time, the possible sting jet has rotated northward into western Ontario, so its influence on the environment in Michigan would be secondary. The sounding from DTX at 2300 UTC shows a favorable low-level wind profile.)

“Sting Jet” signature associated with a high wind event in Scotland

January 3rd, 2012 |
EUMETSAT Meteosat-9 7.35 µm water vapor channel images (click image to play animation)

EUMETSAT Meteosat-9 Water Vapor (7.35 µm) images (click image to play animation)

A rapidly intensifying mid-latitude cyclone (named “Cyclone Ulli” by the Europeans | surface analysis) was responsible for a high wind event as it moved over Scotland on 03 January 2012. A sequence of EUMETSAT Meteosat-9 Water Vapor (7.35 µm) images (above) revealed two notable signatures: (1) the formation of a pronounced area of warm/dry water vapor brightness temperatures (bright yellow to orange color enhancement) over the open water north of Ireland, which indicated a strongly forced region of rapidly descending middle-tropospheric air, and (2) a classic “Sting Jet” signature (Monthly Weather Review | Wikipedia) which then moved eastward across Scotland. Just to the south of the sting jet signature, a wind gust of 78 knots (90 mph) was recorded at Glasgow at 08:20 UTC, followed by a wind gust of 70 knots (81 mph) at Edinburgh at 08:50 UTC.  There were additional reports of wind gusts in excess of 87 knots (100 mph) at non-METAR sites in Scotland.

The Sting Jet signature can also be seen in EUMETSAT Meteosat-9 Infrared (10.8 µm) images (Animated GIF) and EUMETSAT Meteosat-9 Visible (0.635 µm) images (Animated GIF).

A comparison of 1-km resolution NOAA-19 Visible (0.63 µm) and Infrared (10.8 µm) images at 12:54 UTC (below) showed the structure of the cyclone as it was centered over the North Sea between the British Isles and Norway.

NOAA-19 0.63 µm visible channel image + NOAA-19 10.8 µm IR channel image

NOAA-19 0.63 µm visible channel image + NOAA-19 10.8 µm IR channel image

Additional images of this Sting Jet event are available on the EUMETSAT and NASA Wide World of SPoRT sites.