This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Himawari-8 true-color imagery

A sequence of 10-minute interval Himawari-8 true-color Red/Green/Blue (RGB) images covering the period 01 August to 06 August 2015 is shown above (also available as a very large 721 MByte animated GIF, a 66 Mbyte MP4 movie file, or an alternate version here on YouTube). One of the most prominent features seen is... Read More

Himawari-8 true-color images (click to play YouTube animation)

Himawari-8 true-color images (click to play YouTube animation)

A sequence of 10-minute interval Himawari-8 true-color Red/Green/Blue (RGB) images covering the period 01 August to 06 August 2015 is shown above (also available as a very large 721 MByte animated GIF, a 66 Mbyte MP4 movie file, or an alternate version here on YouTube). One of the most prominent features seen is Typhoon Soudelor in the West Pacific Ocean, which reached Category 5 Super Typhoon intensity late in the day on 03 August, as indicated in a plot of the Advanced Dvorak Technique intensity estimate from the CIMSS Tropical Cyclones site (below).

Advanced Dvorak Technique (ADT) intensity estimation plot for Super Typhoon Soudelor (click to enlarge)

Advanced Dvorak Technique (ADT) intensity estimation plot for Super Typhoon Soudelor (click to enlarge)

Other features of interest seen during this 6-day animation include hazy-white plumes of urban pollution and/or wildfire smoke streaming eastward off the Asian continent, as well as light brown or tan-colored plumes of blowing dust/sand originating from the interior desert regions.

The Himawari-8 AHI data are provided by the JMA, acquired by NOAA/NESDIS/STAR, and processed at SSEC/CIMSS. The true-color images use information from AHI bands 1, 2, and 3, combined with a customized contrast stretch algorithm. No background image was used.

View only this post Read Less

Typhoon Soudelor in the Pacific

The animation above (link) shows two-plus days of 10.35 µm Infrared imagery (from Himawari-8) of Typhoon Soudelor over the western Pacific Ocean. The animation of 2.5-minute interval images is from the Himawari-8 Target Sector that shifts as the Typhoon moves. The animation shows significant strengthening to Category 5 intensity and... Read More

The animation above (link) shows two-plus days of 10.35 µm Infrared imagery (from Himawari-8) of Typhoon Soudelor over the western Pacific Ocean. The animation of 2.5-minute interval images is from the Himawari-8 Target Sector that shifts as the Typhoon moves. The animation shows significant strengthening to Category 5 intensity and subsequent weakening as the storm undergoes an eyewall replacement cycle (ERC). That ERC is apparent in the MIMIC morphed microwave imagery, below. In addition, an SST Analysis from the CIMSS Tropical Cyclones site shows the storm traversing an area of relatively cooler Sea Surface Temperatures. Strengthening is expected in the next days as the storm approaches Taiwan.

Morphed Microwave Imagery centered on Soudelor, 1200 UTC 3 August - 1200 UTC 5 August 2015 [click to enlarge]

Morphed Microwave Imagery centered on Soudelor, 1200 UTC 3 August – 1200 UTC 5 August 2015 [click to enlarge]

A visible animation (0.52 µm, 2.5-minute time steps) from Himawari-8, below, (available here as an mp4, or here on YouTube) during the day on 4 August, shows a relatively clear eye with embedded vortices. In addition, tranverse banding at the cirrus level is obvious.

Himawari-8 0.52 µm imagery, 3-4 August 2015 [click to play animation]

Himawari-8 0.52 µm imagery, 3-4 August 2015 [click to play 100+ Megabyte animation]

Suomi NPP overflew Soudelor during the night on 4 August. The toggle between the VIIRS Day/Night Band visible (0.70 µm) image and the Infrared (11.45 µm) image is shown below (courtesy William Straka, SSEC). The three-quarter full moon supplied ample illumination to yield a very crisp visible image at night.

Suomi NPP VIIRS Day/Night Band visible imager (0.70 µm) and infrared (11.45 µm) image at 1608 UTC 4 August 2015 [click to enlarge]

Suomi NPP VIIRS Day/Night Band visible image (0.70 µm) and infrared (11.45 µm) image at 1608 UTC 4 August 2015 [click to enlarge]

View only this post Read Less

Flooding Rains in Tampa

After a July with rainfall that was significantly above normal (Link), Tampa experienced heavy rain on both August 1st and August 3rd, leading to flooding conditions. The animation of Total Precipitable Water, above, from 2-4 August, shows the moisture-rich environment in which the showers and thunderstorms developed. Tampa appears to... Read More

MIMIC Total Precipitable Water [click to play animation]

MIMIC Total Precipitable Water [click to play animation]

After a July with rainfall that was significantly above normal (Link), Tampa experienced heavy rain on both August 1st and August 3rd, leading to flooding conditions. The animation of Total Precipitable Water, above, from 2-4 August, shows the moisture-rich environment in which the showers and thunderstorms developed. Tampa appears to be in a corridor of moisture transport between tropical easterlies over the Atlantic and more westerly motion in advance of a surface trough that had sagged into the northern Gulf of Mexico. As a result of the rains (3.89″ on 1 August and 4.39″ on 3 August), Flood Warnings and Flood Watches persist on 4 August, and River Gauges (Source: http://water.weather.gov/ahps/index.php) continue to show conditions above flood stage (below).

River Gauge Observations (Left) and National Weather Service (Tampa Bay) County Warning Area warnings (right) [click to enlarge]

River Gauge Observations (Left) and National Weather Service (Tampa Bay) County Warning Area warnings (right) [click to enlarge]

GOES-13 Imagery, below, captured the evolution of the heavy rains on 1 August (Loop available here as mp4). These rains fell mostly during the day, and satellite data suggests training convection (that is, repeated development of thunderstorms over one region) produced the rain.

GOES-13 10.7 µm infrared imagery [click to play animation]

GOES-13 10.7 µm infrared imagery [click to play animation]

GOES-13 0.63 µm visible imagery [click to play animation]

GOES-13 0.63 µm visible imagery [click to play animation]

Visible imagery (Click here for mp4) during the day on 1 August (above) confirm the training nature of the convection over Tampa.

In contrast, the heavy rains early on 3 August were associated with a strong mesoscale convective system (loop shown below, or available here as mp4) that developed over the northeast Gulf of Mexico and then sagged southward over Tampa.

GOES-13 10.7 µm infrared imagery [click to play animation]

GOES-13 10.7 µm infrared imagery [click to play animation]

The toggle below of 11.45 µm Brightness Temperature and Day Night band visible (0.70 µm) imagery from 0751 UTC on 3 August shows very cold overshooting tops with temperatures as cold as -88 C over the northwest Gulf. Transverse banding around the periphery of the system is also apparent. Such bands are a signal of turbulence (although no reports were issued at that time).

Suomi NPP VIIRS Infrared Imagery (11.45 µm) and Day Night Band Visible (0.70 µm) Imagery, 0751 UTC 3 August 2015 [click to enlarge]

Suomi NPP VIIRS Infrared Imagery (11.45 µm) and Day Night Band Visible (0.70 µm) Imagery, 0751 UTC 3 August 2015 [click to enlarge]

How much rain has fallen in the week ending 4 August 2015? The image below, from this site, shows totals exceeding 10″ just north of Tampa.

Weekly Rain Totals over Florida [click to enlarge]

Weekly Rain Totals over Florida [click to enlarge]

View only this post Read Less

Large Hail over the Upper Midwest

Strong thunderstorms developed over the upper midwest ahead of a cold front in the afternoon of 2 August 2015. Large Hail (up to 4.25″ diameter in Ogemaw County Michigan) fell and strong winds were observed (up to 70 mph in Portage County Wisconsin) over parts of eastern Wisconsin and lower Michigan. (SPC Storm Report). The visible... Read More

GOES-13 Visible (0.63µm) imagery [click to play animation]

GOES-13 Visible (0.63µm) imagery [click to play animation]

GOES-13 Sounder DPI Lifted Index, times as indicated  [click to play animation]

GOES-13 Sounder DPI Lifted Index, times as indicated [click to play animation]

Strong thunderstorms developed over the upper midwest ahead of a cold front in the afternoon of 2 August 2015. Large Hail (up to 4.25″ diameter in Ogemaw County Michigan) fell and strong winds were observed (up to 70 mph in Portage County Wisconsin) over parts of eastern Wisconsin and lower Michigan. (SPC Storm Report). The visible animation from GOES-13, top (available here as an mp4), shows the development of the storms.

The destabilization of the atmosphere was captured well with the GOES Sounder depiction of Lifted Index, shown above. Values exceeding -10º C were common in the moist air feeding into the developing thunderstorms. The GOES-R Legacy Atmospheric Profile (LAP) Algorithm for 2 August similarly shows the strong instability around Lake Michigan. Lifted Indices also exceeded -10º C.

GOES-R LAP Lifted Index, times as indicated  [click to play animation]

GOES-R LAP Lifted Index, times as indicated, times as indicated [click to play animation]

GOES-13 Sounder DPI Convective Available Potential Energy (CAPE), times as indicated  [click to play animation]

GOES-13 Sounder DPI Convective Available Potential Energy (CAPE), times as indicated [click to play animation]

The GOES-R LAP Algorithm (and the GOES-Sounder) can also compute Convective Available Potential Energy. Values for the GOES Sounder are shown above (they are routinely available here); those for the GOES-R LAP Algorithm are below. The GOES-13 Sounder showed values approaching 5000 J/kg. Values from the GOES-R LAP Algorithm show values around 3000 J/kg. Note how the spatial extent of the instability in both CAPE and LI fields matches well in the Sounder and LAP fields.

GOES-R LAP Convective Available Potential Energy (CAPE), times as indicated  [click to play animation]

GOES-R LAP Convective Available Potential Energy (CAPE), times as indicated [click to play animation]

The storms occurred on a day shortly after the Full Moon, so they were well-illuminated for the Suomi NPP Day Night Band imagery, shown below for 0751 UTC. The parallel lines of clouds over eastern Ohio and western Pennsylvania marks a wind-shift line as shown in this plot that includes surface observations. Those parallel lines of clouds were persistent, as they were present in the 0603 UTC Day Night Band imagery as well (Click here for a toggle between 0613 and 0751 UTC.)

Suomi NPP VIIRS Day Night Band Visible (0.70 µm) Imagery [click to enlarge]

Suomi NPP VIIRS Day Night Band Visible (0.70 µm) Imagery [click to enlarge]

The 11.45 µm Imagery from Suomi NPP shows evidence of overshooting tops persisting at night.

Suomi NPP VIIRS Infrared (11.45 µm) Imagery [click to enlarge]

Suomi NPP VIIRS Infrared (11.45 µm) Imagery [click to enlarge]

View only this post Read Less