This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Explosive cyclogenesis off the East Coast of the United States

A strong extratropical cyclone that deposited snow in the deep south developed explosively during the early morning hours of 4 January 2018. The GOES-16 Clean Window (10.3 µm) animation, above, from 0102 – 1337 UTC on 4 January, brackets the explosive development: from 993 hPa at 0000 UTC to 968 mb at 0900 UTC, a strengthening that easily meets the “Bomb” criteria set forth by Sanders and Gyakum (1980).... Read More

GOES-16 Clean Window (10.3 µm) Imagery, 0102-1337 UTC on 4 January 2018 (Click to animate)

A strong extratropical cyclone that deposited snow in the deep south developed explosively during the early morning hours of 4 January 2018. The GOES-16 Clean Window (10.3 µm) animation, above, from 0102 – 1337 UTC on 4 January, brackets the explosive development: from 993 hPa at 0000 UTC to 968 mb at 0900 UTC, a strengthening that easily meets the “Bomb” criteria set forth by Sanders and Gyakum (1980). The Clean Window animation shows the strong surface circulation with well-defined conveyor belts. Convection develops at the leading edge of the dry slot that is approaching southern New England at the end of the animation. The Low-Level Water Vapor (7.3 µm) animation for the same time, below, suggests very strong descent behind the storm, where brightness temperatures warmer than -10º C (orange in the enhancement used) are widespread.

GOES-16 Low-Level Water Vapor (7.3 µm) Infrared Imagery, 0102-1332 UTC on 4 January 2018 (Click to animate)

This storm can also be viewed using Red-Green-Blue composites (in addition to the single-channel animations shown above). The Airmass RGB, below, combines the Split Water Vapor Difference (6.2 µm – 7.3 µm) as Red, Split Ozone (9.6 µm – 10.3 µm) as Green, and Upper level Water Vapor (6.2 µm) as Blue. (Other storms analyzed with the Airmass RGB can be seen here, here, and here). The strong red signal in the Airmass RGB south of the storm suggests very strong sinking motion.

GOES-16 AirMass RGB Product, 0102-1332 UTC (Click to animate)

ASCAT Scatterometer winds over the system at 0205 UTC showed an elongated surface circulation with multiple observations of winds exceeding 50 knots (in red), and a large region (in yellow) of winds exceeding 35 knots.

GOES-16 ABI Clean Window (10.3 µm) and ASCAT Scatterometer winds, 0205 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Red Visible (0.64 µm) and ASCAT Scatterometer winds, 1520 UTC on 4 January 2018 (Click to enlarge)

The 1520 UTC ASCAT pass, above, sampled half the storm, and hurricane-force winds were indicated.

The snow that was deposited in the Deep South by this storm (also discussed here) persisted through a cold night and was visible in the GOES-16 Visible (0.64 µm) imagery, below. Highly reflective snow can be difficult in a still image to distinguish from clouds — but the Snow/Ice Channel on GOES-16 (1.61 µm) detects energy at a wavelength that is strongly absorbed by ice. Thus, snow (and ice) on the ground (or in clouds), has a different representation. (Here are toggles between the two images, with and without a map). The snow cover over coastal Georgia, South and North Carolina appears dark in the Snow/Ice channel because the snow is absorbing, not reflecting, the 1.61 µm radiation.  It is noteworthy that the 1.61 µm image is especially dark over far southeastern Georgia northeastward along the immediate coastline of South Carolina.  These are regions where freezing rain and sleet fell, versus predominantly snow to the north and west (as also noted here; The National Weather Service in Tallahassee tweeted out an ice/snow accumulation map that also agrees with the 1.61 µm image).  Ice in the cirrus clouds northeast of North Carolina is also apparent in the Snow/Ice 1.61 µm imagery.

GOES-16 Band 2 Visible (0.64 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Band 5 Snow/Ice (1.61 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

Suomi NPP overflew the storm shortly after midnight on 4 January; Day Night band visible imagery (courtesy Kathleen Strabala, CIMSS), below, shows a well-developed cyclone covering much of the northeast Atlantic Ocean. Snow cover is apparent over the deep south of the United States.

Suomi NPP Day Night Band Visible (0.7 µm) Imagery, 0614 UTC on 4 January 2018 (Click to enlarge)

(Added, 5 January 2018: This website shows a during-the-day CIMSS True Color Image animation of the storm on 4 January 2018. Animation courtesy Dave Stettner, CIMSS).

View only this post Read Less

Eastern US winter storm

The initial impacts of a large Eastern US winter storm were seen in a comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) on 03 January 2018 — areas of southeastern Georgia received freezing rain and/or 1-6 inches of snowfall. As clouds began to dissipate, the resulting snow... Read More

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

The initial impacts of a large Eastern US winter storm were seen in a comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) on 03 January 2018 — areas of southeastern Georgia received freezing rain and/or 1-6 inches of snowfall. As clouds began to dissipate, the resulting snow cover appeared bright on the Visible images (since fresh snow is highly reflective at the 0.64 µm wavelength), and darker shades of gray on the Near-Infrared images (since snow and ice are strong absorbers of radiation at the 1.61 µm wavelength). Note the brief appearance of a cloud plume streaming southward from the Hatch Nuclear Power Plant.

Earlier that morning, the Florida Panhandle also received snowfall (text | map), but the lighter accumulations there were insufficient to exhibit a good satellite signature.

In a toggle between Suomi NPP VIIRS true-color and false-color Red-Green-Blue (RGB) images from RealEarth (below), the deeper snow cover in Georgia appears as darker shades of cyan.

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

===== 04 January Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0620 UTC (1:20 AM Eastern time) on 04 January (above; courtesy of William Straka, CIMSS) showed a nighttime view of the rapidly-intensifying storm when it had an estimated minimum central pressure of 972 hPa or 28.70″. Note the signature of snow cover — extending from southeastern Georgia across eastern portions of South Carolina and North Carolina — which is evident on the “visible image at night” Day/Night Band (made possible by ample illumination from the Moon, which was in the Waning Gibbous phase at 92% of Full). A full-resolution version of the Day/Night Band image is available here.

During the following daytime hours, 30-second interval Mesoscale Sector GOES-16 “Red” Visible (0.64 µm) images (below) showed the evolution of the low pressure center of circulation as it continued to rapidly intensify (surface analyses) off the US East Coast.

30-second GOES-16

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface weather type plotted in yellow [click to play MP4 animation]

A larger-scale view (using 5-minute CONUS sector data) of GOES-16 “Red” Visible (0.64 µm) images with hourly plots of surface weather (above) depicted the widespread precipitation associated with the storm. Similarly, plots of hourly wind gusts (below) portrayed the large wind field of the system. Some of the highest snowfall/ice accumulations and peak wind gusts are listed here and here.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface wind gusts plotted in yellow [click to play MP4 animation]

In the wake of the departing storm, the tropospheric column over Florida and the southeastern US was dry enough (3.7 mm or 0.15″ at Tallahassee FL and 4.0 mm or 0.16 ” at Charleston SC) to allow the GOES-16 Lower-level (7.3 µm) Water Vapor imagery (below) to detect the thermal contrast of surface land/water boundaries — portions of the coastline and a few of the larger inland lakes were evident.

"GOES-16

(7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) images [click to play animation]” class=”size-medium” /> GOES-16 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) images [click to play animation]

A full-resolution Suomi NPP VIIRS true-color RGB image at 1738 UTC (below) revealed interesting storm features such its very large cloud shield and convection near the circulation center, as well as the swath of snow cover across parts of Georgia, South Carolina and North Carolina.

Suomi NPP VIIRS true-color RGB image [click to enlarge]

Suomi NPP VIIRS true-color RGB image [click to enlarge]

A toggle between the corresponding Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images (below) helped to highlight locations which received a significant accrual of ice from freezing rain– these areas show up as a darker shade of red on the Snow/Ice RGB image (along the southeastern edge of the swath of snow cover, which is a lighter shade of red). Notable ice accumulations included 0.50″ at Brunswick and Folkston GA, 0.25″ at Georgetown and Myrtle Beach SC, and 0.25″ at Kure Beach NC.

Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images, with surface station identifiers plotted in white [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Snow/Ice RGB images, with surface station identifiers plotted in white [click to enlarge]

Finally, a 30-meter resolution Landsat-8 false-color RGB image viewed using RealEarth (below) showed the snow-covered Charleston, South Carolina area — areas with less dense trees and vegetation showed a more pronounced snow cover signature (shades of cyan). The Charleston International Airport remained closed, due to snow and ice-covered runways.

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

Additional imagery of this explosive cyclogenesis event can be found at this blog post.

View only this post Read Less

A prescribed burn in Montana, as viewed from GOES-15, GOES-16 and GOES-13

A prescribed burn — the SureEnough fire — in central Montana was viewed by GOES-15 (GOES-West), GOES-16 (GOES-East) and GOES-13 Shortwave Infrared (3.9 µm) imagery on 02 January 2018. The images are shown in the native projection for each of the 3 satellites.Due to the improved spatial resolution of the GOES-16 3.9 µm... Read More

GOES-15 (left), GOES-16 (center) and GOES-13 (right) Shortwave Infrared (3.9 µm) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-15 (left), GOES-16 (center) and GOES-13 (right) Shortwave Infrared (3.9 µm) images, with plots of hourly surface reports [click to play MP4 animation]

A prescribed burn the SureEnough fire — in central Montana was viewed by GOES-15 (GOES-West), GOES-16 (GOES-East) and GOES-13 Shortwave Infrared (3.9 µm) imagery on 02 January 2018. The images are shown in the native projection for each of the 3 satellites.

Due to the improved spatial resolution of the GOES-16 3.9 µm Shortwave Infrared band (2 km at satellite sub-point, vs 4 km for GOES-15 and GOES-13) and the more frequent image scans (routinely every 5 minutes over CONUS for GOES-16), an unambiguous thermal anomaly or fire “hot spot” was first evident on GOES-16 at 1707 UTC, just southeast of Lewistown (station identifier KLWT). The GOES-16 fire thermal signature was also hotter (black pixels) compared to either GOES-15 or GOES-13.

View only this post Read Less

GOES-13 will cease transmission on 3 January 2018 [Update: 8 January]

The GOES-13 Satellite, operational as GOES-East from April 2010 through December 2017 (with a notable interruption) will be turned off sometime after 1500 UTC on Wednesday 3 January 2018. (Update: due to an impending East Coast winter storm, GOES-13 deactivation was postponed to 8 January)The visible Full Disk image above, from 1745... Read More

GOES-13 Visible (0.63 µm) Image, 1745 UTC on 2 January 2018 (Click to enlarge)

The GOES-13 Satellite, operational as GOES-East from April 2010 through December 2017 (with a notable interruption) will be turned off sometime after 1500 UTC on Wednesday 3 January 2018. (Update: due to an impending East Coast winter storm, GOES-13 deactivation was postponed to 8 January)

The visible Full Disk image above, from 1745 UTC on 2 January 2018, is one of the last fully illuminated visible image the satellite will process.  (The first processed full disk visible image, from 22 June 2006, can be viewed here.)

On 28 December 2017, GOES-13 imagery included a view of the Moon, as shown here (and zoomed in here).  Future GOES-East imagery from GOES-16 will not include images of the Moon.  GOES-16 will scan the moon when it is near the horizon (and there are occasional GOES-16 mesoscale sectors placed over the Moon for calibration purposes).  However, GOES-16 imagery is remapped to Earth points before being broadcast to the public.  The Moon (happily) is not on the Earth and its points will not be remapped.

Thank you GOES-13 for your long years of service.  A full-resolution version of the image above is available here.

View only this post Read Less