This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Satellite signatures of SpaceX Falcon Heavy rocket launch

<img class="thumbnail" src="https://cimss.ssec.wisc.edu/satellite-blog/wp-content/uploads/sites/5/2018/02/G16_VIS_NIR_FALCON_HEAVY_XMR_06FEB2018_380x1280_B215_2018037_204728_0003PANELS_00003.gif" alt="GOES-16 "Red" Visible (0.64 µm, top), Near-Infrared "Snow/Ice" (1.61 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images, with plots of surface reports [click to play animation]” width=”640″ height=”480″> GOES-16 “Red” Visible (0.64 µm, top), “Blue” Visible (0.47 µm, middle) and Near-Infrared “Snow/Ice” (1.61 µm,... Read More

<img class="thumbnail" src="https://cimss.ssec.wisc.edu/satellite-blog/wp-content/uploads/sites/5/2018/02/G16_VIS_NIR_FALCON_HEAVY_XMR_06FEB2018_380x1280_B215_2018037_204728_0003PANELS_00003.gif" alt="GOES-16 "Red" Visible (0.64 µm, top), Near-Infrared "Snow/Ice" (1.61 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images, with plots of surface reports [click to play animation]” width=”640″ height=”480″> GOES-16 “Red” Visible (0.64 µm, top), “Blue” Visible (0.47 µm, middle) and Near-Infrared “Snow/Ice” (1.61 µm, bottom) images, with plots of surface reports [click to play animation]GOES-16 (GOES-East) “Red” Visible (0.64 µm), “Blue” Visible (0.47 µm) and Near-Infrared “Snow/Ice” (1.61 um) images (above) captured the signature of rocket plumes from the SpaceX Falcon Heavy launch at Kennedy Space Center, Florida on 06 February 2018. Bright areas of water droplet clouds were seen both at the surface near Launch Complex 39A and aloft just east of the Florida coast on the 20:47:28 UTC and 20:52:28 UTC images (the satellite was scanning those cloud features at 20:48:33 / 20:55:33 UTC or 3:48:33 / 3:55:33 PM Eastern Standard Time, respectively). The plume aloft looked like this from the surface. Due to significant lower-tropospheric wind shear, the near-surface launch pad plume drifted slowly toward the northwest, while the higher-altitude plume moved more quickly toward the northeast. Strong upper-tropospheric winds — 86 knots at 140 hPa or 14.4 km on the 12 UTC sounding — led to a 2 hour launch delay until speeds dropped to within safe flight criteria.

Looking farther to the east-northeast over the Atlantic Ocean, a pair of warm thermal anomalies — likely from the recently-separated twin Side Core booster engines (left) and the still-active single Center Core booster engine (right) — were seen on the corresponding 20:47:28 UTC GOES-16 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images (below). A similar warm signature in Water Vapor imagery was observed following a previous SpaceX rocket launch in March 2017.

GOES-16 Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm) images [click to play animation]

GOES-16 Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm, bottom) images [click to play animation]

While Shortwave Infrared (3.9 µm) imagery is useful for detection of thermal anomalies associated with wildfires or volcanic eruptions, in this case the warm signature (darker gray) was much less distinct compared to what was seen on the water vapor imagery (below).

GOES-16 Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Shortwave Infrared (3.9 µm, bottom) image [click to enlarge]

GOES-16 Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Shortwave Infrared (3.9 µm, bottom) image [click to enlarge]

View only this post Read Less

Sensing the surface with water vapor imagery

As a cold, dry arctic air mass moved across the western Great Lakes on 06 February 2018, portions of the land-water boundaries of Lake Superior, Lake Michigan and Lake Huron were very distinct on GOES-16 (GOES-East) Low-level (7.3 µm) Water Vapor images (above). The motion of low-altitude lake effect clouds were also apparent... Read More

GOES-16 Low-level (7.3 µm) Water Vapor images [click to play animation]

GOES-16 Low-level (7.3 µm) Water Vapor images [click to play animation]

As a cold, dry arctic air mass moved across the western Great Lakes on 06 February 2018, portions of the land-water boundaries of Lake Superior, Lake Michigan and Lake Huron were very distinct on GOES-16 (GOES-East) Low-level (7.3 µm) Water Vapor images (above). The motion of low-altitude lake effect clouds were also apparent in the imagery.

Plots of weighting functions for the three GOES-16 ABI Water Vapor bands (7.3 µm, 6.9 µm and 6.2 µm) are shown below, calculated using rawinsonde data from Green Bay, Wisconsin and Gaylord, Michigan. With cold air and low values of Total Precipitable Water at these 2 sites (1.53 mm / 0.06 in and 1.88 mm / 0.07 in, respectively), the height of their weighting functions was shifted to significantly lower altitudes compared to what would be observed in a standard atmosphere. This enabled the contrasting thermal signature of the land/water boundaries to easily reach the satellite sensors, passing through what little moisture existed within the atmospheric column. While the peak of the violet 7.3 µm weighting function plots descended to the 879 hPa pressure level at both sites (which was approximately 1.2 km above the surface), a significant contribution could be seen originating from the surface itself.

Weighting function plots for the three GOES-16 Water Vapor bands, calculated using rawinsonde data from Green Bay, Wisconsin [click to enlarge]

Weighting function plots for the three GOES-16 Water Vapor bands, calculated using rawinsonde data from Green Bay, Wisconsin [click to enlarge]

Weighting function plots for the three GOES-16 Water Vapor bands, calculated using rawinsonde data from Gaylord, Michigan [click to enlarge]

Weighting function plots for the three GOES-16 Water Vapor bands, calculated using rawinsonde data from Gaylord, Michigan [click to enlarge]

Note that the peaks of the blue 6.9 µm weighting function plots were also anomalously low, reaching the 802 and 754 hPa pressure levels — however, in contrast to the 7.3 µm plots there was very little contribution from the actual surface, and the presence of secondary peaks at higher altitudes led to some absorption and subsequent re-emission of upwelling radiation by that layer of colder moisture aloft. As a result, only the faint outline of Lake Superior and its lake effect clouds were occasionally seen on Mid-level 6.9 µm Water Vapor imagery (below).

GOES-16 Mid-level (6.9 µm) Water Vapor images [click to play animation]

GOES-16 Mid-level (6.9 µm) Water Vapor images [click to play animation]

View only this post Read Less

Lee-side cold frontal gravity wave

As a cold front moved rapidly southward across the Great Plains (surface analyses) on 05 February 2018, the signature of a deep-tropospheric lee-side cold frontal gravity wave (reference) could be seen on GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above; also available as an MP4 animation). In addition, the initial... Read More

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, middle) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind barbs plotted in cyan [click to play animation]

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, middle) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind barbs plotted in cyan [click to play animation]

As a cold front moved rapidly southward across the Great Plains (surface analyses) on 05 February 2018, the signature of a deep-tropospheric lee-side cold frontal gravity wave (reference) could be seen on GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above; also available as an MP4 animation). In addition, the initial gravity wave was soon followed by a secondary lee-side gravity wave, which could be seen moving southward over the northern Texas Panhandle by the end of the animation.

Plots of the weighting function (or “contribution function”) for each of the three GOES-16 Water Vapor bands (below) are calculated using 05 February/12 UTC rawinsonde data from Dodge City, Kansas — which was south of the cold front at that time. The peak pressure level for all three weighting function plots was in the 442-497 hPa range, giving some indication of the depth of these vertically-propagating gravity waves.

Weighting function plots for each of the three GOES-16 Water Vapor bands, calculated using 05 February/12 UTC rawinsonde data from Dodge City, Kansas [click to enlarge]

Weighting function plots for each of the three GOES-16 Water Vapor bands, calculated using 05 February/12 UTC rawinsonde data from Dodge City, Kansas [click to enlarge]

GOES-16 Water Vapor weighting functions using 06 February/00 UTC rawinsonde data from Amarillo, Texas — where the surface cold front had passed about 3 hours earlier — are shown below. Note that in the drier post-frontal air mass, the peak pressures for the 3 water vapor bands had increased, descending to the 477 to 684 hPa pressure levels. This comparison helps to underscore the dependence of water vapor weighting function height on the temperature and/or moisture profile of the atmosphere.

Weighting function plots for each of the three GOES-16 Water Vapor bands, calculated using 06 February/00 UTC rawinsonde data from Amarillo, Texas [click to enlarge]

Weighting function plots for each of the three GOES-16 Water Vapor bands, calculated using 06 February/00 UTC rawinsonde data from Amarillo, Texas [click to enlarge]

View only this post Read Less

Ice in the western Great Lakes

After several days of cold temperatures, ice coverage in the western half of Lake Superior began to increase — and GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the motion of some of this lake ice (which was driven by a combination of surface winds and lake circulations) on 04 February 2018.... Read More

GOES-16 "Red" Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

After several days of cold temperatures, ice coverage in the western half of Lake Superior began to increase — and GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the motion of some of this lake ice (which was driven by a combination of surface winds and lake circulations) on 04 February 2018. That morning a number of locations in northern and northeastern Minnesota reported low temperatures in the -20 to -40 ºF range, with -43 ºF at Embarrass (the coldest location in the Lower 48 states).

With an overpass of the Landsat-8 satellite at 1646 UTC, a 30-meter resolution False-color Red-Green-Blue (RGB) image (below) provided a very detailed view of a portion of the Lake Superior ice. NOAA-GLERL analyzed the mean ice concentration of Lake Superior to be at 23.9% ; the Canadian Ice Service analyzed much of the new lake ice to have a concentration of 9/10ths to 10/10ths.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Magnified sections of the Landsat-8 RGB image swath are shown below, moving from northeast to southwest.

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Landsat-8 False-color RGB image [click to enlarge]

Moving to the south, a closer look at Green Bay in northeastern Wisconsin revealed a few small ice floes drifting from the north end of the bay into Lake Michigan (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with plots of hourly surface reports [click to play animation]

View only this post Read Less