This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Industrial and ship plumes in supercooled clouds

A sequence of nighttime MODIS and VIIRS “Fog/stratus” infrared Brightness Temperature Difference (BTD) images (above) revealed long plumes (darker shades of red) streaming southwestward for over 200 miles from their industrial point sources in the Mesabi Range of northeastern Minnesota on 03 December 2018.During the subsequent daytime hours, a comparison of GOES-16 (GOES-East)... Read More

MODIS and VIIRS

MODIS and VIIRS “Fog/stratus” BTD images [click to enlarge]

A sequence of nighttime MODIS and VIIRS “Fog/stratus” infrared Brightness Temperature Difference (BTD) images (above) revealed long plumes (darker shades of red) streaming southwestward for over 200 miles from their industrial point sources in the Mesabi Range of northeastern Minnesota on 03 December 2018.

During the subsequent daytime hours, a comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (below) showed signatures of these Mesabi Range plumes along with others emanating from industrial or power plant sources. A few ship tracks were also apparent across Lake Superior.

Particles emitted from the exhaust stacks at power plants and industrial sites (as well as ships) can act as efficient cloud condensation nuclei, which causes the formation of large numbers of supercooled water droplets having a smaller diameter than those found within the adjacent unperturbed supercooled clouds — and these smaller supercooled cloud droplets are better reflectors of incoming solar radiation, thereby appearing brighter in the Near-Infrared and warmer (darker gray) in the Shortwave Infrared images.

GOES-16

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

On the following night, another sequence of MODIS and VIIRS “Fog/stratus” infrared Brightness Temperature Difference (BTD) images (below) highlighted a number of industrial and power plant plumes across Minnesota, northern Wisconsin and the Upper Peninsula of Michigan. The curved shape of many of these plumes resulted from boundary layer winds shifting from northerly to westerly as the night progressed.

MODIS and VIIRS "Fog/stratus" BTD images [click to enlarge]

MODIS and VIIRS “Fog/stratus” BTD images [click to enlarge]

During the following daytime hours on 04 December, a comparison of VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images (below) showed 2 plume types across eastern Nebraska. There were several of the brighter/warmer plumes similar to those noted on the previous day across Minnesota/Wisconsin/Michigan — but one large plume originating from industrial sites just east of Norfolk (KOFK) had the effect of eroding the supercooled cloud deck via glaciation (initiated by the emission of particles that acted as efficient ice nuclei) and subsequent snowfall. This is similar to the process that creates aircraft “distrails” or “fall streak clouds” as documented here, here and here.

VIIRS Visible (0.64 µm), Near-Infrared

VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]


Farther to the east over Ohio and Pennsylvania, another example of the 2 plume types was seen (below) — one plume originating from an industrial site near Cleveland was glaciating/eroding the supercooled cloud and producing snowfall, while another bright/warm supercooled droplet plume was moving southeastward from a point source located west of Indiana County Airport KIDI.

The Cleveland plume was captured by an overpass of the Landsat-8 satellite, with a False Color Red-Green-Blue (RGB) image viewed using RealEarth providing great detail with 30-meter resolution (below). A small “overshooting top” can even be seen above the industrial site southeast of Cleveland, with the swath of glaciated and eroding cloud extending downwind (to the southeast) from that point.

Landsat-8 False Color RGB image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

Coincidentally, Landsat-8 also captured another example of a glaciating cloud plume downwind of the Flint Hills Oil Refinery south of St. Paul, Minnesota on 03 December (below). The erosion/glaciation of supercooled cloud extended as far south as Albert Lea, Minnesota. Similar to the Cleveland example, a small “overshooting top” was seen directly over the plume point source.

Landsat-8 False Color RGB image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

===== 08 December Update =====

The effect of this industrial plume glaciating and eroding the supercooled water droplet clouds over northern Indiana was also seen in a comparison of Terra MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images (below).

Terra MODIS Visible (0.65 µm), Near-Infrared

Terra MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images [click to enlarge]

===== 09 December Update =====



During the following daytime hours, GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed a number of plumes from industrial sites (many of which were likely refineries) streaming southeastward and eastward over the Gulf of Mexico on 09 December. Note the lack of a plume signature in the 10.3 µm imagery.
GOES-16 "Red" Visible (0.64 µm), Near-Infrared "Snow/Ice" (1.61 µm), Near-Infrared "Cloud Particle Size" (2.24 µm), Shortwave Infrared (3.9 µm) and "Clean" Infrared Window (10.3 µm) images [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

View only this post Read Less

SpaceX launch of Spaceflight SSO-A

* GOES-17 images shown here are preliminary and non-operational *SpaceX launched a Spaceflight SSO-A mission from Vandenberg Air Force Base (KVBG) in California at 1834 UTC on 03 December 2018. GOES-17 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images in addition to Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm)... Read More

GOES-17 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor, plus Near-Infrared

GOES-17 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor, plus Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images [click to enlarge]

* GOES-17 images shown here are preliminary and non-operational *

SpaceX launched a Spaceflight SSO-A mission from Vandenberg Air Force Base (KVBG) in California at 1834 UTC on 03 December 2018. GOES-17 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images in addition to Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (above) showed the hot thermal signature of superheated air from the booster rocket engines, along with a brief cold thermal signature of the booster engine condensation cloud on Water Vapor images. A second hot thermal signature was seen over the adjacent waters of the Pacific Ocean at 1840 UTC as the first stage rocket fired its entry burn to land on a drone ship. Since a GOES-17 Mesoscale Domain Sector was positioned over that region, images were available at 1-minute intervals.

View only this post Read Less

Tornado outbreak in Illinois

The largest December tornado outbreak on record for the state of Illinois occurred on 01 December 2018 (NWS St. Louis | NWS Lincoln | NWS Quad Cities). 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of supercell convection which spawned the severe weather. in addition to the tornadoes, SPC Storm reports included hail as large as 1.75 inch... Read More

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play animation | MP4]

The largest December tornado outbreak on record for the state of Illinois occurred on 01 December 2018 (NWS St. Louis | NWS Lincoln | NWS Quad Cities). 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of supercell convection which spawned the severe weather. in addition to the tornadoes, SPC Storm reports included hail as large as 1.75 inch in diameter and wind gusts of 75 mph.

GOES-16 “Clean” Infrared Window (10.3 µm) images (below) showed that cloud-top infrared brightness temperatures were as cold as -55ºC (darker shades of orange) with the more vigorous thunderstorm overshooting tops.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in red [click to play animation | MP4]

Plots of 18 UTC and 00 UTC rawinsonde data from Lincoln, Illinois (below) indicated that the coldest overshooting top brightness temperature of -55ºC seen in GOES-16 Infrared imagery was representative of a height just above the calculated air parcel Most Unstabe (MU) Equilibrium Level (EL).

Plot of 00 UTC Lincoln, Illinois rawinsonde data [click to enlarge]

Plots of 18 UTC and 00 UTC rawinsonde data from Lincoln, Illinois [click to enlarge]

A sequence of MODIS (from Terra and Aqua) and VIIRS (from Suomi NPP and NOAA-20) Visible and Infrared images (below) provided 2 higher-resolution views of the pre-storm environment, plus 3 views during/following convective initiation. Unfortunately, the thunderstorms in Illinois were located along the far eastern edge of the instrument scans in the final 2 images.

Terra/Aqua MODIS and Suomi NPP/NOAA-20 VIIRS Visible and Infrared images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP/NOAA-20 VIIRS Visible and Infrared images [click to enlarge]

Even though the convection in western Illinois was near the limb of NOAA-20 (mis-labelled as Suomi NPP) VIIRS swath at 2007 UTC — degrading the spatial resolution and introducing some parallax error — the coldest detected Infrared brightness temperature (-52C) was still several degrees colder than that detected by GOES-16 (below). The two images are displayed in different projections, but the enhancements use the same color-vs-temperature breakpoints.

Comparison of GOES-16 ABI and NOAA-20 VIIRS Infrared Window images at 2007 UTC [click to enlarge]

Comparison of GOES-16 ABI and NOAA-20 VIIRS Infrared Window images at 2007 UTC [click to enlarge]

View only this post Read Less

GCOM-W1 AMSR2 microwave products

A series of GCOM-W1 AMSR2 swaths during the period from 2256 UTC on 28 November to 1692 UTC on 30 November 2018 (above) showed the global coverage of Total Precipitable Water and Wind Speed products from that polar-orbiting satellite.A closer look just south of the Atlantic provinces of Canada (above) showed... Read More

GCOM-W! AMSR2 Total Precipitable Water and Wind Speed products, from 2256 UTC on 28 November to 1692 UTC on 30 November [click to play animation]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products, from 2256 UTC on 28 November to 1692 UTC on 30 November [click to play animation]

A series of GCOM-W1 AMSR2 swaths during the period from 2256 UTC on 28 November to 1692 UTC on 30 November 2018 (above) showed the global coverage of Total Precipitable Water and Wind Speed products from that polar-orbiting satellite.

GCOM-W1 AMSR2 Total Precipitable Water, Wind Speed, Surface Rain Rate and Cloud Liquid Water products [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water, Wind Speed, Surface Rain Rate and Cloud Liquid Water products [click to enlarge]

A closer look just south of the Atlantic provinces of Canada (above) showed a comparison of Total Precipitable Water, Wind Speed, Surface Rain Rate and Cloud Liquid Water products over a strong mid-latitude cyclone at 0545 UTC on 29 November (the 0532 UTC time stamp on the images denotes the beginning time of that particular satellite swath).

Surface analyses from the OPC (below) classified this low pressure system as Hurricane Force at 00 UTC and Storm Force at 06 UTC — however, AMSR2 ocean surface wind speeds were as high as 71 knots west of the surface low, 84.8 knots north of the low and 95.6 knots in the vicinity of the occluded front.

Surface analyses at 00 UTC and 06 UTC [click to enlarge]

Surface analyses at 00 UTC and 06 UTC [click to enlarge]

Shortly after the overpass of GCOM-W1, additional views of the western portion of this storm were provided by Aqua MODIS and NOAA-20 VIIRS (below). (note: the NOAA-20 VIIRS images are incorrectly labeled as Suomi NPP)

Aqua MODIS Water Vapor (6.7 µm) and Infrared Window (11.0 µm) images at 0543 UTC [click to enlarge]

Aqua MODIS Water Vapor (6.7 µm) and Infrared Window (11.0 µm) images at 0543 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0557 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0557 UTC [click to enlarge]

Another overpass of GCOM-W1 about 10 hours later continued to show a broad region of strong post-frontal westerly winds to the south of the storm center (below). During that period, the occluded low continued to deepen from 957 to 952 hPa (surface analyses).

GCOM-W1 AMSR2 Total Precipitable Water, Wind Speed at 0532 and 1529 UTC [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products at 0532 and 1529 UTC [click to enlarge]

Additional features seen in the AMSR2 Total Precipitable Water and Wind Speed products in other parts of the world included the following:

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products at 0353 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products south of Iceland at 0353 UTC on 29 November [click to enlarge]

Low pressure south of Iceland (surface analyses), with an ocean surface wind speed of 76 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products off the US West Coast at 1026 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products off the US West Coast at 1026 UTC on 29 November [click to enlarge]

Low pressure off the US West Coast (surface analyses), with an ocean surface wind speed of  70 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products north of Hawai'i at 1202 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products north of Hawai’i at 1202 UTC on 29 November [click to enlarge]

Low pressure and a cold front northwest of Hawai’i (surface analysis), with a long fetch of tropical moisture and widespread ocean surface wind speeds of 60-70 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products southwest of Australia at 1659 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products southwest of Australia at 1659 UTC on 29 November [click to enlarge]

Low pressure southwest of Australia, with an ocean surface wind speed of 47 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products southeast of Argentina at 1659 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products southeast of Argentina at 1659 UTC on 29 November [click to enlarge]

Low preesure and a cold front southeast of Argentina, with TPW as high as 2.2 inches and an ocean surface wind speed of 58.6 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the North Sea at 0259 UTC on 30 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the Norwegian Sea at 0259 UTC on 30 November [click to enlarge]

Low pressure over the Norwegian Sea (surface analysis), with an ocean surface wind speed of 75 knots (above).

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the Aleutian Islands at 1247 UTC on 30 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the Aleutian Islands at 1247 UTC on 30 November [click to enlarge]

A plume of moisture and strong winds ahead of a low pressure and cold front (surface analysis) moving across the Aleutian Islands (above).

Due to the frequent overlap of polar-orbiting satellite swaths at high latitudes, some locations can have data coverage from numerous consecutive overpasses. The example below shows the Barents Sea — between 70-80º N latitude — during 7 consecutive swaths from 2256 UTC on 28 November to 0847 UTC on 29 November.

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the Barents Sea from 2256 UTC on 28 November to 0847 UTC on 29 November [click to enlarge]

GCOM-W1 AMSR2 Total Precipitable Water and Wind Speed products over the Barents Sea from 2256 UTC on 28 November to 0847 UTC on 29 November [click to enlarge]

View only this post Read Less