This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

NOAA/CIMSS ProbSevere with a tornado in Tallahassee, FL

A tornado struck the Tallahassee, FL, airport at 1643 UTC on 27 January 2021 (SPC Storm Report).  The animation above shows ProbSevere (version 2) fields (from this site) in the hour leading up to tornadogenesis.  The animation demonstrates how ProbTor values can be used to identify for closer scrutiny a particular radar object:  the... Read More

NOAA/CIMSS ProbSevere display, 1545 – 1700 UTC on 27 January 2021 (Click to animate)

A tornado struck the Tallahassee, FL, airport at 1643 UTC on 27 January 2021 (SPC Storm Report).  The animation above shows ProbSevere (version 2) fields (from this site) in the hour leading up to tornadogenesis.  The animation demonstrates how ProbTor values can be used to identify for closer scrutiny a particular radar object:  the radar object that ultimately caused a tornado showed greater ProbTor values (than surrounding identified radar objects) in the hour leading up to tornadogenesis. In addition, ProbTor values ramped up quickly just prior to tornadogenesis as low-level azimuthal shear jumped.

One time series below compares ProbWind, ProbHail and ProbTor for the radar object (#15080) that produced the tornado; for this event, ProbWind and ProbTor values were comparable until a ramp-up in ProbTor values before the tornado occurred. The second time series shows the various components of ProbTor for radar object 15080 (both time series courtesy John Cintineo, SSEC/CIMSS).  Note in particular that this storm was not a lightning-producer.  Much of ProbTor’s variability was determined by changes in low-level azimuthal shear.

NOAA/CIMSS ProbSevere values (ProbWind, ProbHail, ProbTor) for radar object #15080, 1530 – 1658 UTC on 27 January 2021 (Click to enlarge)

NOAA/CIMSS ProbTor and component values for Radar object #15080, 1530 – 1658 UTC on 27 January 2021, associated with the Tallahassee FL tornado (Click to enlarge)

Lead time with ProbTor in this example was not exceptional.  However, its elevated values in the hour leading up to the tornado could have provided better situational awareness, and perhaps enhanced confidence in warning issuance for this well-warned event.

_________________________________________________________________________________________________________

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.35 µm, right) images, with plots of SPC Storm Reports [click to play animation | MP4]

Unfortunately, the default Mesoscale Domain Sectors were positioned too far north to cover the Florida Panhandle — but 5-minute CONUS Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) depicted a west-to-east oriented line of thunderstorms across the northern portion of the Panhandle; a trend of cooling cloud-top infrared brightness temperatures was seen as the convection began to produce the tornado.

There was an overpass of the Terra satellite about 19 minutes before the start of the tornado event, at 1618 UTC — 1-km resolution MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images are shown below.

Terra MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images [click to enlarge]

View only this post Read Less

Tornado near Birmingham, Alabama

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Clean” Infrared Window (10.35 um) images (above) displayed the large supercell moving northeastward across Alabama several hours after sunset on 25 January 2021. This thunderstorm eventually produced an EF3 tornado just north of Birmingham (KBHM) beginning at 0440 UTC.A slightly closer view of GOES-16 Infrared images that include plots of surface reports... Read More

GOES-16 “Clean” Infrared Window (10.35 um) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Clean” Infrared Window (10.35 um) images (above) displayed the large supercell moving northeastward across Alabama several hours after sunset on 25 January 2021. This thunderstorm eventually produced an EF3 tornado just north of Birmingham (KBHM) beginning at 0440 UTC.

A slightly closer view of GOES-16 Infrared images that include plots of surface reports is shown below. Dew point values feeding northeastward into the thunderstorms were in the middle 60s F.

GOES-16 "Clean" Infrared Window (10.35 um) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 um) images [click to play animation | MP4]

The coldest infrared brightness temperatures exhibited by the pulsing overshooting tops were -66ºC (darker shades of black) — which appeared to be the temperature that would be attained by a Most Unstable air parcel reaching the Maximum Parcel Level (MU MPL) as analyzed on a plot of 00 UTC rawinsonde data from Birmingham (below).

Plot of 00 UTC rawinsonde data from Birmingham, Alabama [click to enlarge]

Plot of 00 UTC rawinsonde data from Birmingham, Alabama [click to enlarge]

View only this post Read Less

Heavy rainfall and snowfall in Southern California

As an anomalously-deep 500 hPa low began to move inland over Southern California during the 23 January24 January 2021 period, GOES-17 (GOES-West)  Air Mass RGB images (above) showed a compact Potential Vorticity (PV) anomaly approaching the coast — and the RAP40 model indicated that the “dynamic tropopause” (defined here as the pressure of the... Read More

GOES-17 Air Mass RGB images, with contours of PV1.5 pressure [click to play animation | MP4]

GOES-17 Air Mass RGB images, with contours of PV1.5 pressure [click to play animation | MP4]

As an anomalously-deep 500 hPa low began to move inland over Southern California during the 23 January24 January 2021 period, GOES-17 (GOES-West)  Air Mass RGB images (above) showed a compact Potential Vorticity (PV) anomaly approaching the coast — and the RAP40 model indicated that the “dynamic tropopause” (defined here as the pressure of the PV1.5 surface) was descending to the 675 hPa pressure level at 18 UTC.

A west-to-east oriented cross section of RAP40 model fields along Line A-A’ (below) depicted the descending dynamic tropopause at 19 UTC.

Cross section of RAP40 model fields along line A-A' [click to enlarge]

Cross section of RAP40 model fields along line A-A’ [click to enlarge]

GOES-17 Mid-level Water Vapor (6.9 µm) images (below) showed the increasing reports of rain and snow that resulted as the PV Anomaly moved inland and provided additional forcing for ascent. Near the coast, thunderstorms were reported at Fulton and Long Beach around 03 UTC. Storm total precipitation amounts included rainfall of 1.40 inch and snowfall of 12-18 inches.

GOES-17 Mid-level Water Vapor (6.9 µm) images, with plots of hourly surface weather type [click to play animation | MP4]

GOES-17 Mid-level Water Vapor (6.9 µm) images, with plots of hourly surface weather type [click to play animation | MP4]

GOES-17 Water Vapor images at 2301 UTC and 0246 UTC (below) revealed sporadic lightning activity (indicated by small clusters of GLM Groups).

GOES-17 Mid-level Water Vapor (6.9 µm) image at 2301 UTC, with GLM Groups plotted in red [click to enlarge]

GOES-17 Mid-level Water Vapor (6.9 µm) image at 2301 UTC, with GLM Groups plotted in red [click to enlarge]

GOES-17 Mid-level Water Vapor (6.9 µm) image at 0246 UTC, with GLM Groups plotted in red [click to enlarge]

GOES-17 Mid-level Water Vapor (6.9 µm) image at 0246 UTC, with GLM Groups plotted in red [click to enlarge]

===== 24 January Update =====

GOES-17 Day Snow-Fog RGB images [click t play animation | MP4]

GOES-17 Day Snow-Fog RGB images [click to play animation | MP4]

On the following day, as clouds began to clear the areal extent of resulting fresh snow cover (darker shades of red) was seen in GOES-17 Day Snow-Fog RGB images (above). Even parts of the high desert — north and east of the mountain ranges — received some snowfall (for example, 2-3 inches were reported at Hesperia).

Suomi NPP VIIRS True Color RGB and False Color RGB images (below) showed the snow cover (shades of cyan) at 2036 UTC.

Suomi NPP VIIRS True Color RGB and False Color RGB images [click to enlarge]

Suomi NPP VIIRS True Color RGB and False Color RGB images [click to enlarge]

View only this post Read Less

NUCAPS fields across an upper tropospheric front

The AirMass RGB from GOES-16 at 0800 UTC on 20 January 2021 showed a distinct color change across central Missouri, from red to green.  The enhanced red coloring suggests a large difference in water vapor brightness temperatures.  The toggle above (including an image with NUCAPS* sounding points), shows structures in... Read More

GOES-16 ABI Airmass RGB, Band 10 and Band 8 (7.34 µm and 6.19 µm, respectively), and GOES-16 Airmass RGB overlain with NUCAPS sounding availability plots, 0801 UTC oni 20 January 2021 (click to enlarge)

The AirMass RGB from GOES-16 at 0800 UTC on 20 January 2021 showed a distinct color change across central Missouri, from red to green.  The enhanced red coloring suggests a large difference in water vapor brightness temperatures.  The toggle above (including an image with NUCAPS* sounding points), shows structures in the water vapor imagery consistent with an upper tropospheric front.

Water Vapor and Airmass RGB imagery fields are useful because they be compared to model fields of the tropopause, and similarities in model fields and satellite imagery lend credence to the idea that the model initialization is accurate.  Compare the Airmass RGB and the Rapid Refresh mapping of the pressure on the 1.5 PVU surface below.  There is good spatial correlation between model and satellite fields.

GOES-16 Airmass RGB and Rapid Refresh model field of Pressure on the 1.5 PVU surface, 0800 UTC 20 January 2021 (Click to enlarge)

How do vertical profiles from NUCAPS vary across the tropopause fold?  The animation below shows six different profile in Missouri and Arkansas, spanning the reddish region of the airmass RGB.

GOES-16 Airmass RGB image with selected NUCAPS profiles, as indicated. (Click to enlarge)

A more efficient way to view information from NUCAPS is to view gridded fields.  Polar2Grid is used to transform the vertical profile to horizontal fields at the individual NUCAPS pressure levels (and then vertical interpolation moves those fields to standard levels).  The animations below show gridded values that are all in agreement with the presence of a tropopause fold where the Airmass RGB and model fields suggest.  Gridded temperature and moisture can be combined in many ways.  Gridded Ozone is also available in AWIPS (some of these fields were created using the Product Browser).

Ozone from NUCAPS, below, does show an enhancement, as expected, in the region where the tropopause fold is suggested by the airmass RGB.

NUCAPS-derived ozone anomalies, ca. 0800 UTC on 20 January 2021 (Click to enlarge)

The gridded NUCAPS tropopause level, shown below, can also be inferred from the individual profiles shown above.

Gridded NUCAPS Tropopause level, ca. 0800 UTC on 20 January 2021 (click to enlarge)

Note how the lapse rates show relatively less stable air (in the mid-troposphere) in the region of the tropopause fold.

Gridded 500-700 mb Lapse rates, ca. 0800 UTC on 20 January 2021 (click to enlarge)

Mixing ratio shows dry mid- and upper-tropospheric air, in the region of the tropopause fold, as might be expected from the GOES-16 water vapor imagery.

Gridded NUCAPS esimates of 300-700 mb mixing ratio, ca. 0800 UTC on 20 January 2021 (Click to enlarge)

In general, NUCAPS data can be used to augment other satellite and model data to better understand the thermodynamic structure of the atmosphere.  For more information on NUCAPS profiles, refer to this training video.

*The careful reader will note that the timestamp of the NUCAPS Sounding Availability plot, 0753 UTC, is different from the GOES-16 imagery.  Why?  The NUCAPS Sounding Availability plot is timestamped (approximately) when NOAA-20 initially overflies North American airspace.  NOAA-20 was flying over Missouri shortly after 0800 UTC, as shown in this plot (from this website).  Gridded NUCAPS fields are timestamped when NOAA-20 is overhead.

View only this post Read Less