Moist air over the tropical western Pacific Ocean

July 22nd, 2021 |
MIMIC Total Precipitable Water, 0000 UTC 21 July – 1200 UTC 22 July

Microwave estimates of total precipitable water over the western Pacific Ocean (available here) show a moist airmass — out of which Typhoon In-Fa (seen near Taiwan in the animation) emerged — over the western Pacific Ocean. (The circulation of Tropical cyclone Cempaka is also apparent near the Gulf of Tonkin) This rich moisture has led to very heavy rains and Flash Flood alerts on the island of Guam (at 13.4 N, 144.5 E). Are there any indications that a new tropical cyclone will emerge out of the moisture?

The toggle below shows Himawari-8 10.41 µm “Clean Window” infrared imagery (notice In-Fa in the northwest part of the image). A distinct trough is apparent in the scatterometery north of the Marianas islands (and north of 20 N latitude), with west-southwesterly surface winds bordered by east-southeasterlies to the north. Weaker winds are indicated south of Guam. (For a recent primer on Scatterometer winds, click here; ASCAT winds can be found online here)

ASCAT Scatterometry winds and Himawari-8 Band 13 infrared (10.41 µm)imagery, 1200 UTC on 22 July 2021

NOAA-20 overflew this region at 1600 UTC on 22 July. The imagery below shows Tropopause Heights as well as Total Precipitable water — along with Band 13 imagery (over a different location) at that time. NUCAPS estimates of TPW are in the 60-70 mm range (in agreement with the MIMIC animation above); Very high tropopauses are Equatorward of 20 N Latitude.

A ribbon of small wind shear exists, as shown in the 200-850 wind shear analysis below, taken from the CIMSS Tropical Website. Meteorologists continue to monitor this region of tropical activity.

200-850 mb wind shear, 1800 UTC on 22 July 2021, over the western Pacific Ocean.

Elsa briefly regains hurricane intensity before making landfall along the Florida coast

July 6th, 2021 |

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Late in the day on 06 July 2021, Tropical Storm Elsa regained hurricane intensity as of 0000 UTC, just off the west coast of Florida. 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the tropical cyclone during the 1500 UTC to 0000 UTC time period. In the morning, cloud-top infrared brightness temperatures of -80ºC or colder were seen (violet pixels), but during most of the day they were in the -70 to -79ºC range. While Elsa had been moving over water with Sea Surface Temperature values around 28ºC, the Ocean Heat Content of those waters was relatively low.

For a few hours the low-level circulation of Elsa remained exposed from its deep convection to the northeast — and GOES-16 Visible images with an overlay of deep-layer shear at 1800 UTC, from the CIMSS Tropical Cyclones site (below), showed that this was due to westerly shear values around 25-30 knots over the area.

GOES-16 “Red” Visible (0.64 µm) images, with an overlay of deep-layer wind shear at 1800 UTC [click to enlarge]

GOES-16 “Red” Visible (0.64 µm) images, with an overlay of deep-layer wind shear at 1800 UTC [click to enlarge]

The center of Elsa moved just to the east of Buoy 42023 — a plot of wind speed/gust and pressure is shown below.

Plot of wind speed/gusts and pressure at Buoy 42023

Plot of wind speed/gusts and pressure at Buoy 42023

A DMSP-15 Microwave (85 GHz) Microwave image at 2155 UTC (below) indicated that Elsa had nearly completed the formation  of a closed eyewall at that time.

DMSP-15 Microwave (85 GHz) Microwave image at 2155 UTC [click to enlarge]

DMSP-15 Microwave (85 GHz) Microwave image at 2155 UTC [click to enlarge]

GOES-16 Infrared  / Water Vapor Difference images (below) revealed pockets of stronger overshooting tops near the center of deep convection during the hours leading up to Elsa reaching hurricane intensity.

GOES-16 Infrared / Water Vapor Difference images [click to enlarge]

GOES-16 Infrared  / Water Vapor Difference images [click to enlarge]

===== 07 July Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

After once again weakening to Tropical Storm intensity at 0600 UTC, Elsa eventually made landfall along the coast of Florida around 1500 UTC on 07 July, as seen in 1-minute GOES-16 Visible and Infrared images (above) — inland impacts included an EF0 tornado, wind gusts to 71 mph and rainfall exceeding 11 inches (NWS Public Information Statements).

At 1223 UTC, a DMSP-17 SSMIS Microwave image (below) indicated that a closed eyewall was not present with Elsa at that time.

DMSP-17 SSMIS Microwave (85 GHz) image [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image [click to enlarge]

Hurricane Elsa

July 2nd, 2021 |

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Elsa was upgraded to a Category 1 hurricane at 1230 UTC on 02 July 2021 — and 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the tropical cyclone during and after the time period that it began to spread hurricane-force winds across the islands of Barbados and St. Lucia. Pulsing overshooting tops exhibited infrared brightness temperatures in the -80 to -87ºC range (shades of purple).

GOES-16 Infrared images with an overlay of deep-layer wind shear from the CIMSS Tropical Cyclones site (below) indicated that Elsa was moving through an environment of low shear.

GOES-16 Infrared images, with an overlay of deep-layer wind shear at 20 UTC [click to enlarge]

GOES-16 Infrared images, with an overlay of deep-layer wind shear at 20 UTC [click to enlarge]

Subtropical storm Raoni off the coast of South America

June 28th, 2021 |

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the circulation of Subtropical Storm Raoni (discussion issued by MARINHA) off the coast of Argentina/Uruguay on 28 June 2021.

In the corresponding GOES-16 “Clean” Infrared Window (10.35 µm) images (below), the coldest cloud tops exhibited infrared brightness temperatures around -50ºC (shades of yellow).

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

===== 29 June Update =====

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 Visible images (above) showed that Subtropical storm Raoni continued its northeastward motion, and was located off the coast of far southeastern Brazil on 29 June (12 UTC surface analysis | discussion).

GOES-16 Infrared images (below) indicated that Raoni was unable to maintain a persistent closed ring of cold clouds around its center.

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

A sequence of ASCAT surface scatterometer winds (source) from Metop-A and Metop-C (below) revealed swaths of wind speeds of 40 knots or greater within the northeastern and southwestern sectors of the system.

ASCAT winds from Metop-A and Metop-C [click to enlarge]

ASCAT winds from Metop-A and Metop-C [click to enlarge]