Tropical Storm Cristobal makes landfall along the coast of Louisiana

June 7th, 2020 |

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 “Red” Visible (0.64 µm) images (above) revealed low-level vortices that were pivoting around the analyzed center of Tropical Storm Cristobal as it approached the coast of Louisiana on 07 June 2020, making landfall at 2200 UTC. Wind gusts were as high as 57 mph in Louisiana and 64 mph in Mississippi.

GOES-16 Visible images with overlays of GLM Flash Extent Density (below) indicated that there was very little satellite-detected lightning associated with Cristobal.

GOES-16 “Red” Visible (0.64 µm) images, with overlays of GLM Flash Extent Density and surface reports [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with overlays of GLM Flash Extent Density and surface reports [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images (below) showed numerous cloud-top infrared brightness temperatures as cold as -70 to -77ºC (darker shades of red) within some of the convective bands.

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 Longwave Infrared Window (11.2 µm) images with plots of Derived Motion Winds (below) showed the broad low-, mid- and upper-level circulation of the tropical storm.

GOES-16 Longwave Infrared Window (11.2 µm) images, with plots of Derived Motion Winds [click to play animation | MP4]

GOES-16 Longwave Infrared Window (11.2 µm) images, with plots of Derived Motion Winds [click to play animation | MP4]

Rich tropical moisture was being transported northward across the Gulf of Mexico by Cristobal — the Blended Total Precipitable Water (TPW) and Percent of Normal TPW product (below) portrayed a large area with TPW values in the 2.5-3.0 inch range, which represented departures of 175-200% of normal. This led to areas of flash flooding along parts of the Gulf Coast, with some locations receiving 4-8 inches of rainfall.

Blended TPW and Percent Normal TPW images [click to play animation | MP4]

Blended TPW and Percent of Normal TPW images [click to play animation | MP4]

The MIMIC TPW product during the period 03-07 June (below) provided a larger-scale view of the origins of the tropical moisture associated with Cristobal.

MIMIC TPW product, 03-07 June [click to play animation | MP4]

MIMIC TPW product, 03-07 June [click to play animation | MP4]

Tropical Storm Arthur forms off the coast of Florida

May 16th, 2020 |

GOES-16

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without an overlay of GLM Flash Extent Density [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) images, with and without an overlay of GLM Flash Extent Density (above) showed the period leading up to the formation of Tropical Storm Arthur during the evening of 16 May 2020 (at 03 UTC on 17 May) — making it the first tropical cyclone of the season in the Atlantic Basin. There were periods of lightning activity within the elongated cluster of deep convection east of the storm center.

==== 17 May Update =====

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

During most of the day on 17 May, the low-level circulation center of Arthur was easily seen in 1-minute GOES-16 “Red” Visible (0.64 µm) images (above).

The corresponding GOES-16 Infrared images — with and without an overlay of GLM Flash Extent Density — are shown below.

GOES-16 "Clean" Infrared Window (10.35 µm) images, with and without an overlay of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without an overlay of GLM Flash Extent Density [click to play animation | MP4]

===== 18 May Update =====

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute GOES-16 Visible images (above) showed that the low-level circulation center of Arthur became exposed during the day on 18 May. The center of Arthur passed very close to the Diamond Shoals buoy just off the coast of North Carolina (wind/pressure plot).

GOES-16  Visible images with plots of Metop ASCAT winds (below) revealed surface winds as high as 37 knots just east of the center of Arthur.

GOES-16 "Red" Visible (0.64 µm) images, with plots of Metop ASCAT winds [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with plots of Metop ASCAT winds [click to play animation | MP4]

A View of the Development of Geostationary Imagers through the lens of BAMS

May 14th, 2020 |

A collection of 60 BAMS covers spanning the years, to highlight the rapid advance of imaging from the geostationary orbit, is shown above (a version that loops more slowly can be seen here). The first cover is the first of BAMS, in January of 1920, while the second, from January of 1957 is the first time artificial ‘satellite’ was in a title of a BAMS article. The third image, from November of 1957, is a remarkable article on potential uses of satellites. This included both qualitative uses: (1) Clouds, (2) Cloud Movements, (3) Drift of Atmospheric Pollutants, (4) State of the Surface of the Sea (or of Large Lakes), (5) Visibility or Atmospheric Transparency to Light — and quantitative uses: (1) Albedo, (2) Temperature  of  a  Level  at  or  Near  the Tropopause, (3) Total Moisture Content., (4) Total  Ozone  Content, (5) Surface  (Ground-Air Interface) Temperature, and (6) Snow Cover. Early covers showcase rockets, balloons and high-altitude aircraft to prepare the way to human space travel (Gemini, Apollo, etc.), polar-orbiters (TIROS, NIMBUS, VHRR, NOAA, etc.) and finally geostationary orbit (ATS-1, ATS-3, SMS, GOES, Meteosat, INSAT, Himawari, etc.).

Reasons to look back at the BAMS covers:

Interactive web page, with links to the original “front matter”.

Montage of select BAMS covers

Montage of select BAMS covers

Note: All cover images are from the Bulletin of the American Meteorological Society.

Tropical Depression One-E forms in the East Pacific Ocean

April 24th, 2020 |

GOES-17 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the circulation of Tropical Invest 90E in the East Pacific Ocean on 24 April 2020. The low-level circulation center appeared to be located about 100 miles southwest of the 18 UTC surface analysis position.

GOES-17 Visible images with a plot of Deep-Layer Wind Shear from the CIMSS Tropical Cyclones site (below) indicated that Invest 90E was embedded within an environment of low shear — the National Hurricane Center gave the feature an 80% chance of further developing into a tropical depression within 48 hours.

GOES-17 “Red” Visible (0.64 µm) with a plot of Deep-Layer Wind Shear at 23 UTC images [click to enlarge]

GOES-17 “Red” Visible (0.64 µm) images, with a plot of Deep-Layer Wind Shear at 23 UTC [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth (below) revealed tendrils of transverse banding along the western and northern periphery if the disturbance.

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

===== 25 April Update =====

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 Infrared images (above) showed the period when the disturbance became classified as Tropical Depression One-E at 15 UTC — making this the earliest tropical cyclone on record in the East Pacific basin during the satellite era.

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-17 Infrared images with plots of tropical surface analyses (above) indicated that TD One-E was situated just north of the Intertropical Convergence Zone (ITCZ). The MIMIC-TPW product (below) showed that the tropical depression was tapping moisture from the ITCZ and drawing it northward.

MIMIC Total Precipitable Water product [click to enlarge]

MIMIC Total Precipitable Water product [click to enlarge]

GOES-17 Visible images (below) revealed an exposed low-level circulation that was displaced north-northwest of the primary cluster of deep convection.

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]