ProbSevere products over the Southern Plains

May 3rd, 2021 |

The NOAA/CIMSS ProbSevere portfolio contains AI models for nowcasting convective weather. I’ll use Monday’s severe weather over the Southern Plains to highlight several of them.

A strong cold front spawned numerous severe-hail, wind, and tornado producing storms over Texas and Oklahoma, aided by very large values of convective available potential energy (CAPE; > 4000 J/kg).  You can see numerous storm reports in Figure 1.

210503_rpts Reports Graphic

Storm Prediction Center’s preliminary severe storm reports for May 3rd, 2021.

Probsevere version 2 (PSv2) is an operational set of models at NOAA, which predict the probability of severe hail, severe wind, and tornadoes, in the next 60 minutes. The models are storm-centric, and the models’ domain is the entire contiguous United States (CONUS).  These models use MRMS (radar), GOES (satellite), short-term NWP, and terrestrial-based lightning observations to generate probabilistic guidance of severe hazards. Figure 2 shows output from an experimental version (PSv3), which includes additional MRMS, GOES, and NWP fields as predictors in a machine learning model.

Figure 2: ProbSevere v3 contours (colored, around storms), MRMS MergedReflectivity, and NWS severe weather warnings (yellow and red boxes) for storms over the Southern Plains. The second outer contour around some storms is colored by the probability of tornado.

 

Another ProbSevere product is a convolutional neural network that uses GOES-R ABI and GLM images to detect regions of intense convection, and is often correlated with strong overshooting tops, “bubbly-like” texture in visible imagery, strong lightning cores, and the cold-U/above-anvil cirrus plume signature. The intense convection probability (ICP) can be run on the 1-minute mesoscale scans as well as 5-minute CONUS sector scans aboard the GOES satellites. The ICP does not require radar data, and may also be able to operate on data from satellites with similar intruments (e.g., Meteosat Third Generation). ICP output is being used as a predictor in the experimental ProbSevere v3.

 

Predicting when and where lightning will occur is also important for many users, such as mariners, aviators, and outdoor event managers. The probability of lightning model (PLTG) is also a convolutional neural network, using images of visible, near-infrared, and longwave-infrared channels to nowcast lightning occurrence in the next 60 minutes. The purple-to-orange shaded regions in the video below show GLM flash-extent density (i.e., flashes passing through a location).

Monitoring severe weather as it happens

March 17th, 2021 |

NUCAPS/MADIS Lifted Index, GLM Group Density, GOES-16 Band 13 Infrared Imagery, and ProbSevere polygons, all at ~0939 UTC on 17 March 2021 (Click to enlarge) All imagery from RealEarth

When NOAA’s Storm Prediction Center issues a High Risk of severe weather (below), people sit up and take notice. Are there easily accessible tools to monitor the state of the atmosphere in/around a region of expected severe weather?

The toggle above shows products (early in the morning on 17 March — at 439 AM CDT) in RealEarth that can help. NOAA-Unique Combines Atmospheric Processing System (NUCAPS)/MADIS (Meteorological Assimilation Data Ingest System) Lifted Indices combine tropospheric information from NUCAPS profiles with lower-tropospheric/surface information from MADIS to create Lifted Index fields, twice daily. These fields are generated using HEAP (Hyper-spectral Enterprise Algorithm Package) software (incorporated into CSPP — the Community Software Processing Package) at the UW-CIMSS Direct Broadcast site. A Suomi-NPP (or NOAA-20) overpass will quickly yield stability information. Today’s afternoon Suomi-NPP overpasses occurs around 1730 UTC (east of the High Risk area) and 1915 UTC (Link, from this site.) The toggle above also includes GOES-16 Band 13 infrared (Clean Window, 10.3 µm) information, GLM Group Density, and NOAA/CIMSS ProbSevere (ProbSevere has a stand-alone RealEarth-based site here).  All of these products are useful in monitoring this evolving, dangerous event.   As is often the case, the strongest convection was occurring at 0939 UTC along the edges of the most unstable air, that is, in the instability gradient.

People within the region of elevated risk of Severe Weather on 17 March 2021, especially the region High Risk, should pay especial attention to the weather.

NOAA Storm Prediction Center Risk assessment for 17 March 2021, issued 1300 UTC on 17 March (Click to enlarge)


Added: the Geosphere site (link) gives rapid access to GOES-16 imagery (including mesoscale sectors) and can be used to monitor this evolving situation.


The afternoon image of stability is shown below.

NUCAPS/MADIS Lifted Index, GLM Group Density, and GOES-16 Band 13 Infrared Imagery, all at ~1830 UTC on 17 March 2021 (Click to enlarge) All imagery from RealEarth

Hail Storm in Daytona Beach

March 6th, 2021 |

GOES-16 Convection RGB over Florida, 1431 – 1701 UTC on 6 March 2021 (Click to animate)

Accumulating hail fell in Daytona Beach FL (Link) on 6 March 2021 in association with a front over the Florida peninsula.  Preliminary storm reports from SPC (link) show reports of 1″ to 1.75″ hail. (The region was under a general thunderstorm outlook from SPC: link). The animation above shows the Convection RGB from 1431 through 1701 UTC on 6 March, bracketing the hail event over Daytona Beach near 1600 UTC. A strong white/yellow signal develops in a cell over Volusia County (Dayton Beach is within Volusia County) around 1545 UTC. This is the cell that deposits the hail.

NOAA/CIMSS ProbSevere display, 1535 UTC on 6 March 2021 (click to enlarge)

ProbHail values for this event (from this website) were small, at less than 10%. The value of ProbSevere here could be in identifying the cell responsible for the Hail, and showing values for the radar object that exceed others nearby; that is, providing guidance as to which radar cell to interrogate most often. The image above shows ProbSevere at 1535, just before a Severe Thunderstorm Warning was issued. The image below shows ProbSevere at 1600 UTC, just after the Special Marine Warning was issued (and while the Severe Thunderstorm warning was still in effect).

NOAA/CIMSS ProbSevere readout, 1600 UTC on 6 March 2021 (click to enlarge)

The time series plot for the radar object that produced the hail is shown below. Note that ProbHail (and lightning) increased (marginally) before the hail events (reported between 1535 and 1615 UTC) before collapsing.

ProbSevere values associated with Storm Object 84638, which object produced hail over Daytona Beach, 1500-1800 UTC on 6 March 2021 (click to enlarge)

There are several features in the visible imagery, below, that might be affecting the thunderstorm producing the hail. An east-west boundary is moving down the Atlantic coastline, passing through Daytona Beach around 1551 UTC. A very strong reflective signal becomes apparent after 1541 UTC as well (link): the convective cell has penetrated through the cirrus shield in the region.

GOES-16 Band 2 Visible (0.64 µm) imagery, 1431 – 1701 UTC on 6 March 2021 (click to animate)

This was a challenging forecast in a marginal environment.

NOAA/CIMSS ProbSevere with a tornado in Tallahassee, FL

January 27th, 2021 |

NOAA/CIMSS ProbSevere display, 1545 – 1700 UTC on 27 January 2021 (Click to animate)

A tornado struck the Tallahassee, FL, airport at 1643 UTC on 27 January 2021 (SPC Storm Report).  The animation above shows ProbSevere (version 2) fields (from this site) in the hour leading up to tornadogenesis.  The animation demonstrates how ProbTor values can be used to identify for closer scrutiny a particular radar object:  the radar object that ultimately caused a tornado showed greater ProbTor values (than surrounding identified radar objects) in the hour leading up to tornadogenesis. In addition, ProbTor values ramped up quickly just prior to tornadogenesis as low-level azimuthal shear jumped.

One time series below compares ProbWind, ProbHail and ProbTor for the radar object (#15080) that produced the tornado; for this event, ProbWind and ProbTor values were comparable until a ramp-up in ProbTor values before the tornado occurred. The second time series shows the various components of ProbTor for radar object 15080 (both time series courtesy John Cintineo, SSEC/CIMSS).  Note in particular that this storm was not a lightning-producer.  Much of ProbTor’s variability was determined by changes in low-level azimuthal shear.

NOAA/CIMSS ProbSevere values (ProbWind, ProbHail, ProbTor) for radar object #15080, 1530 – 1658 UTC on 27 January 2021 (Click to enlarge)

NOAA/CIMSS ProbTor and component values for Radar object #15080, 1530 – 1658 UTC on 27 January 2021, associated with the Tallahassee FL tornado (Click to enlarge)

Lead time with ProbTor in this example was not exceptional.  However, its elevated values in the hour leading up to the tornado could have provided better situational awareness, and perhaps enhanced confidence in warning issuance for this well-warned event.

_________________________________________________________________________________________________________

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.35 µm, right) images, with plots of SPC Storm Reports [click to play animation | MP4]

Unfortunately, the default Mesoscale Domain Sectors were positioned too far north to cover the Florida Panhandle — but 5-minute CONUS Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) depicted a west-to-east oriented line of thunderstorms across the northern portion of the Panhandle; a trend of cooling cloud-top infrared brightness temperatures was seen as the convection began to produce the tornado.

There was an overpass of the Terra satellite about 19 minutes before the start of the tornado event, at 1618 UTC — 1-km resolution MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images are shown below.

Terra MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.64 µm) and Infrared Window (11.0 µm) images [click to enlarge]