Mesoscale Convective Vortex (MCV) in Texas
GOES-13 Infrared Window (10.7 µm) images (above) showed a large Mesoscale Convective System (MCS) that developed in far eastern New Mexico after 2000 UTC on 11 June 2016, then moved eastward and eventually southward over West Texas during the nighttime hours on 12 June. The MCS produced wind gusts to 75 mph and hail of 1.00 inch in diameter in Texas (SPC storm reports).Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images at 0801 UTC or 3:01 am local time (above) showed cloud-top infrared brightness temperatures were as cold as -83º C (violet color enhancement), along with a number of bright streaks on the Day/Night Band image due to cloud illumination by intense lightning activity (there were around 5000 cloud-to-ground lightning strikes associated with this MCS). On the infrared image, note the presence of cloud-top gravity waves propagating outward away from the core of overshooting tops.
This MCS produced heavy rainfall, with as much as 3.44 inches reported near Lomax (NWS Midland TX rainfall map | PNS). An animation of radar reflectivity (below, courtesy of Brian Curran, NWS Midland) showed the strong convective cells moving southward (before the Midland radar was struck by lightning and temporarily rendered out of service).
During the subsequent daytime hours, GOES-13 Visible (0.63 µm) images (below) revealed the presence of a large and well-defined Mesoscale Convective Vortex (MCV) as the cirrus canopy from the decaying MCS eroded. A fantastic explanation of this MCV was included in the afternoon forecast discussion from NWS Dallas/Fort Worth. New thunderstorms were seen to develop over North Texas during the late afternoon and early evening hours as the MCV approached — there were isolated reports of hail and damaging winds with this new convection (SPC storm reports). Initiation of this new convection may have also been aided by convergence of the MCV with a convective outflow boundary moving southward from Oklahoma. A sequence of Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) (below) showed snapshots of the MCV at various times during the day.