When Atmospheric Bores cause Severe Weather

June 1st, 2019 |

RadarScope imagery from shortly after 0900 UTC on 01 June 2019 (Click to play .mov animation)

Strong near-surface inversions over the upper-midwest early on 1 June 2019 (as shown by 1200 UTC Skew-Ts at Green Bay, WI, Detroit/WhiteLake, MI and Gaylord, MI) helped support the presence of southward-propagating bore features, as shown in the still image (an animation) of radar imagery above (Courtesy Fred Best, SSEC), and (more subtly) in the water vapor imagery (Courtesy Scott Bachmeier) below.

The pressure sensor at the top of the Atmospheric Oceanic and Space Science Building showed many small time-scale pressure perturbations on this day. (Image courtesy Pete Pokrandt)

Water Vapor Imagery from to on 1 June 2019; Low-level (GOES-16 ABI Band 10, 7.34 µm) on the left ; mid-level (GOES-16 ABI Band 9, 6.95 µm) in the center; upper-level (GOES-16 ABI Band 8, 6.19 µm) on the right

Later in the day, strong convection developed over southwestern Lower Michigan, starting shortly after 2215 UTC.  The visible imagery below shows 1-minute imagery (GOES-16 ABI Band 2, 0.64 µm) from a Mesoscale sector positioned over the convection.  At the start, the parallel lines of low clouds suggest a bore feature is propagating southward towards strong convection over northern Indiana and northern Ohio.  Two things happen when that feature meets the convective outflow: some energy is apparently reflected to the north, but very strong convection rapidly develops near Battle Creek MI, where 2″ hail was observed at 2235 UTC (SPC Storm Reports).

GOES-16 ABI 1-minute Visible (0.64 µm) imagery, 2115-2149 UTC on 1 June 2019 (Click to play animated gif)

The clean window (GOES 16 ABI Band 13, 10.3 µm) animation during the day, below, show many features suggesting bore/gravity wave propagation over the area. It is challenging to pick out the impulse from this animation that lead to the severe convection that hit Battle Creek.

GOES-16 ABI Infrared (10.3 µm, Band 13 “Clean Window”) imagery, 1001-2331 UTC on 1 June 2019 (Click to play animated gif)

The Low-Level water vapor animation, shown below, also shows many features that resemble gravity waves or bores, but it also shows a line of parallel features moving towards the site of convective initiation (Consider this short loop from 2126 to 2156 UTC, for example).

GOES-16 ABI Water Vapor (7.3 µm, Band 10 “Low-Level Water Vapor”) infrared imagery, 1001-2331 UTC on 1 June 2019 (Click to play animated gif)

For convection to initiate, instability should be present. The graphic below from the Storm Prediction Center mesoanalysis website shows a nose of unstable air (represented by high values of CAPE) encroaching into southwestern Lower Michigan.

SPC CAPE analysis, 2100 UTC on 1 June 2019 (Click to enlarge)

GOES-16 Baseline Products can also diagnose instability. On 1 June 2019, however, abundant cloudiness limited the utility of the Baseline clear-sky only products, but AllSky versions have been developed and are available online at this website. The animation below shows the evolution of the AllSky Lifted Index from 1826 through 2356 UTC on 1 June 2019. In agreement with the SPC analysis, the AllSky product shows a nose of instability pushing into southwestern lower Michigan. An southward-propagating impulse (apparent in both visible and low-level water vapor imagery) meeting this gradient in instability did initiate convection on this day.

GOES-16 AllSky Lifted Index, half-hourly from 1826 UTC to 2356 UTC on 1 June 2019 (Click to play animated gif)

NOAA/CIMSS ProbSevere (v.2), a tool designed to give confidence that severe weather might occur in the next 60 minutes, shown below, tracked the rapid evolution of the storm. ProbHail increased from 7% at 2220 UTC to 81% at 2230 UTC!

NOAA/CIMSS ProbSevere, with readout values, from 2200 to 2236 UTC on 1 June 2019 (Click to play animated gif)

The chart below, from John Cintineo, SSEC/CIMSS, graphically shows the very rapid development of Prob Hail values. Much of the increase in ProbHail was driven by MESH and Total Lightning observations. When an impulse enters a region of instability in a good environment, explosive growth can result.

NOAA/CIMSS ProbSevere readout for Radar Object 411723 (the storm that produced Hail in Battle Creek MI on 1 June 2019) (Click to enlarge)

Many thanks to TJ Turnage, NWS Grand Rapids, for alerting us to this very interesting case.

NUCAPS Sounding Availability

May 16th, 2019 |

NUCAPS soundings from NOAA-20 at 0653 UTC on 16 May 2019, 34.4 N, 75.8 W (Click to enlarge)

The Cross-Track Infrared Sounder (CrIS) on Suomi NPP suffered an anomaly back in late March and the mid-wave portion of the detectors are not functioning as designed; the wavelengths affected include those sensitive to water vapor. Because of this data outage, NUCAPS soundings are not being produced from Suomi NPP. Suomi NPP was the sole data source for NUCAPS in National Weather Service offices over the contiguous United States.

As shown above, NUCAPS soundings are being produced by NOAA-20, which, like Suomi NPP, carries both the CrIS and the Advanced Technology Microwave Sounder (ATMS). NOAA-20 NUCAPS soundings are scheduled to replace the Suomi NPP NUCAPS soundings in National Weather Service Forecast Offices in late May 2019. NOAA-20 is in the same orbit as Suomi NPP, but offset by half an orbit; overpasses are offset by about 45 minutes, so the NUCAPS data should show up in forecast offices at about the same time of day. (Compare these Suomi NPP orbits over North America to these from NOAA-20; Orbital tracks for most polar orbiters are here.) Time latency for NOAA-20 soundings is improved over Suomi-NPP however; there will be less wait needed for the soundings.

NUCAPS soundings are also produced from Metop-A and Metop-B, satellites that carry the Infrared Atmospheric Sounding Interferometer (IASI) and the Advanced Microwave Sounding Unit (AMSU) and Microwave Humidity Sensor(MHS) instruments.

NUCAPS soundings from NOAA-20, Metop-A and Metop-B are available at this site. That site includes a map (shown here) To access the soundings, move the map to your desired location, and click on the small box in the upper left of the map (under the +/- that cause the map to zoom in and out).  After clicking the box, use a left click and mouse drag on the map to define a region where sounding points will appear. (Alternatively, click the ‘Thumbnail Viewer’ box above the map; as you mouse over the points, a sounding will appear in the window.) The points are color-coordinated based on how old the latest sounding is. Zoom in, and choose your point.  Three profiles are displayed: The initial regression profile (labeled MW+IR Regr), the microwave-only profile (labeled MW phys) and the final physical retrieval profile (labeled MW+IR phys).  The resultant sounding you see will be the latest, but 10 soundings near that point over the past several days can be accessed as well.

NUCAPS soundings from Suomi NPP are not gone for good, however.  The CrIS has redundant electronics, and ‘A’ side — that has partially failed — and a ‘B’ side that has not been tested since before launch (Suomi NPP was launched on 28 October 2011!  Here is one of its first images).  The ‘B’ side electronics can be activated, and if they work, NUCAPS algorithms would have to be recalibrated for an essentially new data source.  This would take several months.  Alternatively, NUCAPS for Suomi NPP could be reformulated to account for the missing data with the ‘A’ side electrontics, something that also would take several months.  A decision on the path to take is forthcoming.

Change to the GOES-R ABI Band 7 (3.9 µm) Resampler

May 1st, 2019 |

GOES-17 3.9 µm imagery around a fire at 23:30 UTC on 17 February 2019 with the former interpolation scheme (left), the updated interpolation scheme (center) and the difference field between the two (right). The yellow box shows the approximate fire location over Mexico. (Image courtesy Chris Schmidt, CIMSS)

GOES-R Advanced Baseline Imagery (ABI) detections must be interpolated from the detector grid on the satellite to a grid that is fixed and geographically referenced. This is accomplished by applying a truncated sinc function in both north-south and east-west directions to the data on the detector grid. Sinc functions include small negative tails adjacent to the large central maximum; for fifteen out of sixteen ABI bands, those subtractions are not detectable. For Band 7, however, the shortwave infrared band at 3.9 µm, the ABI band with the largest dynamic range (and 14 bits of information), the interpolation from detector space to the fixed grid pixel can introduce negative values of radiances and careful observers have seen Cold Pixels Around Fires, the so-called CPAF effect.

An improved interpolation for Band 7 only has been implemented (on 23 April for GOES-16 and on 18 April for GOES-17) in the GOES-R Ground System that reduces the negative tail in the Truncated Sinc function. In the single image above, from GOES-17 at 23:30 UTC on 17 February, the “old” truncated sinc function (denoted ‘Original’ in the image) has generated a falsely cold pixel — white in the greyscale enhancement — off the southeast corner of the warm pixels shown in black.  The cold pixels are not present when the new, improved interpolation scheme is used. Note, however, that the Data Max annotated in the image has cooled by 2K with the improved interpolation;  a fire is nevertheless obvious.

Consider the animation below, for example, (from this blog post on the Cranston fire), that used the ‘old’ interpolation scheme.  Cold pixels (in white) occasionally appear around the periphery the fire (in red) in the center of the image. The new interpolation means that such cold pixels will no longer appear in the data.

GOES-16 ABI visible imagery (0.64 µm) and shortwave infrared imagery (3.9 µm) over the Cranston fire, 1842 UTC on 25 July 2018 to 0227 UTC on 26 July 2018  (Click to enlarge)

The image below shows a fire at 1641 UTC on 29 April 2019, after the CPAF change was implemented into the GOES-R Ground System (two different enhancements are shown). No artificial cold pixels are present. The hottest pixel is 405 K, which would have produced a CPAF under the original truncated sinc kernel.

GOES-16 3.9 µm Imagery at 16:41 UTC on 29 April 2019 (Image courtesy Chris Schmidt, CIMSS)(Click to enlarge)

GOES-R Band 2 (“red visible”) Calibration Changes

May 1st, 2019 |

GOES-16 ABI Band 2 Visible Imagery (0.64 µm) at 1811 UTC on 21 April (before the calibration change) and at 1811 UTC on 25 April 2019 (after the calibration change) in and around Pima County (outlined in black) in southern Arizona (click to enlarge).

On 23 April 2019, a Ground Systems update resulted in a change to the ‘brightness’ (in the form of dimming) of the GOES-16 Band 2 (0.64 µm) visible imagery (as noted in this calibration events log).  The  calibration coefficients used for this band were determined in the lab before the launch. (Other calibration information is collected on-orbit.) GOES-R Advanced Baseline Imager (ABI) visible imagery have been compared to visible imagery from polar-orbiting satellites in the past several years (see this page), and GOES-R ABI Band 2 (0.64 µm) radiances were consistently larger than measurements from Suomi NPP and NOAA-20 using the Visible-Infrared Imaging Radiometer Suite (VIIRS).

ABI calibration coefficients for GOES-16 were modified on 23 April, using plausible values from pre-launch lab measurements. Thus, Band 2 radiances decreased by about 6.9%. This will have an impact on the computed albedo as shown above: the later date (after the calibation change) is slightly darker than the earlier (before the calibration change). This change means that Band 2 radiances and albedo are more closely aligned with values from other satellites. A similar toggle over Texas is shown below.

Note: A similar change for GOES-17 was implemented at 1540 UTC on 27 April 2019.

GOES-16 ABI Band 2 Visible Imagery (0.64 µm) at 1811 UTC on 21 April (before the calibration change) and at 1811 UTC on 25 April 2019 (after the calibration change) in and around Fayette County, TX (outlined in black), just west of metropolitan Houston (click to enlarge).