Cyclone Idai makes landfall in Mozambique

March 14th, 2019 |

Meteosat-8 Infrared (10.8 µm) and DMSP-17 SSMIS Microwave (85 GHz) images of Cyclone Idai at 1630 UTC [click to enlarge]

Meteosat-8 Infrared Window (10.8 µm) and DMSP-17 SSMIS Microwave (85 GHz) images of Cyclone Idai at 1630 UTC [click to enlarge]

Cyclone Idai — which had been slowly intensifying over warm water within the Mozambique Channel since 09 March — made landfall as a Category 2 storm along the coast of Mozambique on 14 March 2019 (storm track). A toggle between Meteosat-8 Infrared Window (10.8 µm) and DMSP-17 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site (above) revealed a large and well-defined eye and eyewall structure at 1630 UTC. Idai had been rated at Category 3 intensity during 3 periods of time during its life cycle, most recently at 12 UTC on the day of landfall.

At 1911 UTC, Metop-A ASCAT winds in excess of 60  knots were sampled just west of the eyewall region (below).

Meteosat-8 Infrared Window (10.8 µm) image, with plots of Metop-A ASCAT winds at 1911 UTC [click to enlarge]

Meteosat-8 Infrared Window (10.8 µm) image, with plots of Metop-A ASCAT winds at 1911 UTC [click to enlarge]

A comparison of VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, visualized using RealEarth, is shown below.

NOAA-20 and Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 and Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Idai had been moving through an environment of very low deep-layer wind shear — a favorable factor for maintaining its intensity — as shown in an animation of Meteosat-8 Infrared Window (10.8 µm) images (below).

Meteosat-8 Infrared Window (10.8 µm) images with contours of satellite-derived Deep-Layer Wind Shear valid at 18 UTC [click to enlarge]

Meteosat-8 Infrared Window (10.8 µm) images with contours of satellite-derived Deep-Layer Wind Shear valid at 18 UTC [click to enlarge]

The MIMIC TC product (below) suggested that Idai might have been in the early stage of an eyewall replacement cycle (ERC) just prior to making landfall. This, after completing a separate ERC during the preceding 48 hours.

MIMIC TC morphed microwave imagery [click to enlarge]

MIMIC TC morphed microwave image product [click to enlarge]

The eye of Idal was becoming cloud-filled as it approached the Mozambique coast, as seen on EUMETSAT Meteosat-8 High Resolution Visible (0.8 µm) images (below).

Meteosat-8 High Resolution Visible (0.8 µm) images [click to play animation]

Meteosat-8 High Resolution Visible (0.8 µm) images [click to play animation]

A time series of surface data from the port city of Beira FQBR (below) showed deteriorating conditions before observations ceased at 15 UTC.

Surface observation data from Beira, Mozambique [click to enlarge]

Surface observation data from Beira, Mozambique [click to enlarge]


Incidentally, an overpass of the Landsat-8 satellite on 11 March provided a 30-meter resolution view of the eye (below), soon after Idai’s first period of rapid intensification to Category 3 strength (SATCON). Surface mesovortices were apparent within the eye.

Landsat-8 False Color image of the eye of Idai on 11 March [click to play a zooming animation]

Landsat-8 False Color image of the eye of Idai on 11 March [click to play a zooming animation]

Flooding from Idai led to hundreds of fatalities in Mozambique and Zimbabwe.

Leave a Reply