GOES-14 SRSO-R: central Montana wildfire

August 15th, 2015

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 3.9 µm shortwave IR images [click to play MP4 animation]

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 3.9 µm shortwave IR images [click to play MP4 animation]

A comparison of 4-km resolution GOES-15 (GOES-West), GOES-14, and GOES-13 (GOES-East) 3.9 µm shortwave infrared images (above; click to play MP4 animation; also available as a 9.4 Mbyte animated GIF) showed the development and evolution of the “hot spot” (dark black to yellow to red color enhancement) associated with a small wildfire that formed near the border of Fergus and Petroleum counties in central Montana during the afternoon hours on 15 August 2015. With GOES-15 Routine Scan mode “SUB-CONUS” sectors, images were available up to 6 times per hour (at :00, :11, :15, :30, :41, and :45); with GOES-13 in Rapid Scan Operations (RSO) mode, images were available up to 8 times per hour (at :00, :07, :15, :25, :30, :37, :45, and :55). The GOES-14 satellite had been placed into Super Rapid Scan Operations for GOES-R (SRSO-R) mode, providing images at 1-minute intervals to emulate what will be available with mesoscale sectors from the ABI instrument on GOES-R.

For the central Montana wildfire, the first unambiguous signature of a darker black wildfire hot spot began to appear on each satellite after about 1945 UTC, with the first color-enhanced pixels (signifying a shortwave IR brightness temperature of 331.9 K) showing up on the 2026 UTC GOES-14 image. The hottest fire pixel  on the GOES-15 images was 336.5 K at 2130 UTC, while the hottest fire pixel on GOES-13 images was 329.8 K at 2125 UTC. From 2120 to 2130 UTC, the hottest GOES-14 fire pixels were 341.2 K (the saturation temperature of the 3.9 µm detectors on that satellite).

With the finer spatial resolution of the shortwave IR detectors on the polar-orbiting MODIS (1-km) and VIIRS (375-meter) instruments, a fire hot spot was first detected on the 1857 UTC VIIRS image (below).

Terra/Aqua MODIS and Suomi NPP VIIRS 3.7 µm shortwave IR images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS 3.7 µm shortwave IR images [click to enlarge]

Eruption of the Cotopaxi volcano in Ecuador

August 14th, 2015

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images (above; click to play animation) displayed distinct dark-gray ash plumes from 2 separate daytime eruptions of the Cotopaxi volcano in Ecuador on 14 August 2015 (there was also an initial eruption that occurred during the preceding nighttime hours). The asterisk near the center of the images marks the location of the volcano summit. Volcanic ash fall was observed in the capitol city of Quito (station identifier SEQU, located about 50 km or 30 miles north of the volcano), and some flights were diverted due to the volcanic ash cloud.

The corresponding GOES-13 infrared (10.7 µm) images (below; click image to play animation) showed that cloud-top IR brightness  temperatures were as cold a -53º C (orange color enhancement) at 1915 UTC.

GOES-13 infrared (10.7 µm) images [click to play animation]

GOES-13 infrared (10.7 µm) images [click to play animation]

The volcanic cloud features were also easily tracked on GOES-13 water vapor (6.5 µm) images (below; click image to play animation). In fact, note how the signature in the water vapor imagery is more distinctly seen for a longer period of time than on the 10.7 µm infrared imagery.

 GOES-13 water vapor (6.5 µm) images [click to play animation]

GOES-13 water vapor (6.5 µm) images [click to play animation]

The tan-colored volcanic ash cloud was also evident on Aqua MODIS and Suomi NPP VIIRS true-color Red/Green/Blue (RGB) imagery (below), as viewed using the SSEC RealEarth web map server.

Aqua MODIS true-color images [click to enlarge]

Aqua MODIS true-color images [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

A comparison of Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images is shown below (courtesy of William Straka, SSEC). The coldest cloud-top IR brightness temperature was -72.7º C.

Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images [click to enlarge]

Ice in Hudson Bay, Canada

August 7th, 2015

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images (above; click image to play animation; also available as an MP4 movie file) revealed a large amount of ice remaining in southern and eastern portions of Hudson Bay, Canada on 07 August 2015. The ice can be seen “sloshing” back and forth during the day as winds and/or water currents moved it around.

The discrimination of ice vs supercooled water droplet clouds can be made by comparing Terra MODIS true-color and false-color Red/Green/Blue (RGB) images at 1611 UTC (below). On the false-color image, ice (and glaciated clouds with a high concentration of ice crystals at cloud top) appeared as darker shades of red, in contrast to supercooled water droplet clouds which appeared as varying shades of white to cyan.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

A Suomi NPP VIIRS true-color image as visualized using the SSEC RealEarth web map server (below) showed the ice at 1800 UTC; even greater detail can be seen in this zoomed-in version of the image.

Suomi NPP VIIRS true-color image [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]


Maps from from the Canadian Ice Service (below) indicated that the concentration of this thick first-year ice (dark green) was still as high as 9/10ths to 10/10ths (red) on 07 August; on 03 August, the ice concentration departure from normal was as high as +9/10ths to +10/10ths (dark blue) in some locations.

Hudson Bay ice concentration [click to enlarge]

Hudson Bay ice concentration [click to enlarge]

Hudson Bay ice stage [click to enlarge]

Hudson Bay ice stage [click to enlarge]

Hudson Bay ice concentration departure from normal [click to enlarge]

Hudson Bay ice concentration departure from normal [click to enlarge]

Long-track Tornado over southwestern Manitoba

July 27th, 2015

Color-enhanced Infrared (10.7 µm) imagery from GOES-15 (left) and GOES-13 (right), times as indicated  [click to play animation]

Color-enhanced Infrared (10.7 µm) imagery from GOES-15 (left) and GOES-13 (right), times as indicated [click to play animation]

A strong tornado (rated a high-end EF-2) touched down near Pierson, Manitoba at around 0130 UTC on 28 July or 8:30 pm local time on 27 July (Press Report) and persisted until about 0355 UTC or 10:55 pm local time (near Virden Manitoba). The animation above shows GOES-15 (left) and GOES-13 (right) Infrared imagery from 0000 UTC through 0430 UTC. The strong storm lifting northward over southwestern Manitoba is apparent, with an enhanced-V signature especially noticeable in the GOES-13 imagery.

A closer view of the tornadic supercell is shown below, with overlays of surface reports (metric units). The pulsing nature of the overshooting tops is evident in the fluctuation of the coldest cloud-top IR brightness temperatures (the coldest of which was -69º C, darker black color enhancement, on the 0300 UTC GOES-15 and 0315 UTC GOES-13 images). There are different apparent positions of the storms based on the satellite that views them because of parallax shifts. Such shifts are especially pronounced at higher latitudes with very tall storms.

GOES-15 (left) and GOES-13 (right) 10.7 µm Infrared images, with surface reports [click to play animation]

GOES-15 (left) and GOES-13 (right) 10.7 µm Infrared images, with surface reports [click to play animation]

A 1-km resolution Terra MODIS 11.0 µm Infrared image at 0331 UTC is shown below; the minimum cloud-top IR brightness temperature was -73º C.

Terra MODIS 11.0 µm Infrared image [click to enlarge]

Terra MODIS 11.0 µm Infrared image [click to enlarge]

GOES-13 Visible (0.63 µm) imagery, times as indicated  [click to play animation]

GOES-13 Visible (0.63 µm) imagery, times as indicated [click to play animation]

Visible imagery from GOES-13 (above) and GOES-15 (below) showed the overshooting tops associated with the tornadic thunderstorm, as well as the rapidly expanding cirrus shield.

GOES-15 Visible (0.62 µm) imagery, times as indicated  [click to play animation]

GOES-15 Visible (0.62 µm) imagery, times as indicated [click to play animation]

A closer view of the tornadic supercell from GOES-15 vs GOES-13 is shown below, with overlays of surface reports (metric units). The overshooting tops are again apparent on the images, along with an above-anvil plume (which is easier seen on the GOES-13 images, due to a more favorable forward-scattering viewing geometry). The robust convective development was first seen on the 2030 UTC images, in the vicinity of the Saskatchewan/Manitoba/North Dakota border region.

GOES-15 (left) and GOES-13 (right) 0.63 µm visible channel images, with surface reports [click to play animation]

GOES-15 (left) and GOES-13 (right) 0.63 µm visible channel images, with surface reports [click to play animation]

As an area of low pressure was deepening over eastern Montana, warm and humid air was surging northward into far southern Saskatchewan and Manitoba (surface analyses). GOES sounder derived product images (available from this site) of Convective Available Potential Energy (CAPE), Lifted Index, and Total Precipitable Water (below) showed that the environment across southern Manitoba was becoming increasingly unstable and moist leading up to the time of convective initiation.

GOES sounder CAPE derived product images [click to play animation]

GOES sounder CAPE derived product images [click to play animation]

GOES sounder Lifted Index derived product images [click to play animation]

GOES sounder Lifted Index derived product images [click to play animation]

GOES sounder Total Precipitable Water derived product images [click to play animation]

GOES sounder Total Precipitable Water derived product images [click to play animation]