Atmospheric river events bring heavy precipitation to California

January 13th, 2017

MIMIC Total Precipatable Water product [click to play MP4 animation]

MIMIC Total Precipatable Water product [click to play MP4 animation]

A series of 3 atmospheric river events brought heavy rainfall and heavy snowfall to much of California during the first 10 days of January 2017 (NWS San Francisco/Monterey | WeatherMatrix blog). Hourly images of the MIMIC Total Precipitable Water product (above; also available as a 33 Mbyte animated GIF) showed the second and third of these atmospheric river events during the 06 January11 January 2017 period, which were responsible for the bulk of the heavy precipitation; these 2 events appear to have drawn moisture northeastward from the Intertropical Convergence Zone (ITCZ)..

Terra MODIS Visible (0.65 µm) and Near-Infrared

Terra MODIS Visible (0.65 µm) and Near-Infrared “Snow/Ice” (2.1 µm) images [click to enlarge]

A relatively cloud-free day on 13 January provided a good view of the Sacramento Valley and San Francisco Bay regions. A comparison of Terra MODIS Visible (0.65 µm) and Near-Infrared  “Snow/Ice” (2.1 µm) images (above) showed that snow cover in the higher terrain of the Coastal Ranges and the Sierra Nevada appeared darker in the Snow/Ice band image (since snow and ice are strong absorbers of radiation at the 2.1 µm wavelength) — but water is an even stronger absorber, and therefore appeared even darker (which allowed the areas of flooding along the Sacramento River and its tributaries to be easily identified). A similar type of 1.6 µm Near-Infrared “Snow/Ice” Band imagery will be available from the ABI instrument on the GOES-R series, beginning with GOES-16.

Better detail of the flooded areas of the Sacramento River and its tributaries was seen in 250-meter resolution false-color Red/Green/Blue (RGB) imagery from the MODIS Today site — water appears as darker shades of blue, while snow appears as shades of cyan (in contrast to supercooled water droplet clouds, which appear as shades of white). In the corresponding MODIS true-color image, rivers and bays with high amounts of turbidity (tan shades) were evident; the offshore flow of sediment from a few rivers could also be seen.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

 

Oil well fire in Utah

January 6th, 2017

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-15 (GOES-West) Visible (0.63 µm) images (above) showed a small, short-lived black cloud that formed south/southwest of Vernal (station identifier KVEL) in northeastern Utah on 06 January 2017. This feature was the result of a fire at an oil well site (media report | well location) that apparently started around 11:30 am local time (1830 UTC); the black cloud from the burning oil tanks — which was first apparent on the 1930 UTC visible image — stood out well against the snow-covered ground. The initial northwestward transport of the smoke plume was consistent with lower-tropospheric winds in Grand Junction, Colorado rawinsonde data at 07 January/00 UTC, which showed southeasterly winds as high as 784 hPa (2185 meters or 7169 feet above ground level). The sounding profile also showed that this height was the top of a well-defined temperature inversion, which acted as a cap to prevent the smoke from reaching higher altitudes (photo).

GOES-13 (GOES-East) Visible (0.63 µm) images (below) also displayed the dark smoke plume. The viewing angles from the 2 satellites were similar (~53 degrees from GOES-15 vs ~57 degrees from GOES-13), but the time sampling was slightly better from GOES-15 (due to the extra “SUB-CONUS” scan images at :11 and :41 minutes nearly every hour). Image frequency will be even better with the GOES-R series of satellites (beginning with GOES-16), with routine scans every 5 minutes; the visible image spatial resolution will also be improved (to 0.5 km, vs 1.0 km with the current GOES).

GOES-13 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-13 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

MODIS Visible (0.645 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images from a 2036 UTC overpass of the Aqua satellite (below) showed the black smoke cloud in the Visible, but there was no evidence of a fire “hot spot” in the Shortwave Infrared (the media report indicated that the fire was extinguished about 2 hours after it started, which would have been around or just before the time of the MODIS images). On the Infrared Window image, the smoke plume actually did exhibit a slightly colder (darker blue color enhancement) signature, which is unusual since conventional fire and wildfire smoke is normally transparent to thermal radiation.

Aqua MODIS Visible (0.645 µm) and Shortwave Infrared (3.7 µm) images at 2036 UTC [click to enlarge]

Aqua MODIS Visible (0.645 µm) and Shortwave Infrared (3.7 µm) images at 2036 UTC [click to enlarge]

A view of the 250-meter resolution Aqua MODIS true-color Red/Green/Blue (RGB) image from the MODIS Today site is shown below.

Aqua MODIS true-color image at 2036 UTC [click to enlarge]

Aqua MODIS true-color image at 2036 UTC [click to enlarge]

Christmas Blizzard

December 26th, 2016

GOES-13 Water Vapor (6.5 µm) images, with hourly surface weather symbols [click to play animation]

GOES-13 Water Vapor (6.5 µm) images, with hourly surface weather symbols [click to play animation]

A mid-latitude cyclone intensified as it moved northeastward across Nebraska, the eastern Dakotas and northern Minnesota (3-hourly surface analyses) during 25 December26 December 2016. GOES-13 (GOES-East) Water Vapor (6.5 µm) images (above) showed distinct banding within the warm conveyor belt, a well-defined dry slot, and a large comma head that formed from the cold conveyor belt. The storm produced blizzard conditions across much of the Northern Plains and Upper Midwest, with heavy snowfall (as much as 22.0 inches in western North Dakota), freezing rain (ice accretion as thick as 0.5 inch in Minnesota and North Dakota) , sleet (up to 2.0 inches deep in Minnesota) and heavy rainfall; in Kansas there were also a few tornadoes (SPC storm reports).

A noteworthy characteristic of the storm was very strong winds — a closer view of GOES-13 Water Vapor imagery with hourly plots of surface wind gusts (in knots) is shown below.

GOES-13 Water Vapor (6.5 µm) images, with hourly surface wind barbs and wind gusts in knots [click to play animation]

GOES-13 Water Vapor (6.5 µm) images, with hourly surface wind barbs and wind gusts in knots [click to play animation]

Note the swath of wind gusts in the 50-60 knot range which progressed across central and northeastern Nebraska into northwestern Iowa and finally southwestern Minnesota during the 02 UTC to 12 UTC period on 26 December — this was pointed out in a tweet by Anthony Sagliani as a “sting jet” feature:


As observed in previous sting jet cases (03 Jan 2012 | 28 Oct 2013), the strongest winds occurred near the curved “scorpion tail” signature seen in the water vapor imagery (which marked the leading edge of the cold conveyor belt as it advanced into the rear edge of the dry slot of the cyclone circulation).

A comparison of Aqua MODIS Visible (0.65 µm), Infrared Window (11.0 µm) and Water Vapor (6.7 µm) images at 2001 UTC on 25 December is shown below.

Aqua MODIS Visible (0.65 µm), Infrared Window (11.0 µm) and Water Vapor (6.7 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm), Infrared Window (11.0 µm) and Water Vapor (6.7 µm) images [click to enlarge]

A closer view with Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1952 UTC on 25 December (below) showed a detailed view of the banded cloud structures from Kansas into South Dakota, as well as small overshooting tops associated with thunderstorms in southeastern South Dakota and southwestern Minnesota. This storm produced the first Christmas Day thunderstorms on record in both Sioux Falls and Rapid City, South Dakota; thundersnow was also observed in Bismarck, North Dakota.

Suom NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suom NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Blizzard impacts North Dakota and Minnesota

December 8th, 2016

GOES-13 Water Vapor (6.5 µm) images, with hourly surface weather symbols [click to play animation]

GOES-13 Water Vapor (6.5 µm) images, with hourly surface weather symbols [click to play animation]

A major winter storm produced widespread blizzard conditions in North Dakota and northwestern Minnesota (as well as far northern South Dakota) as low pressure deepened (3-hourly surface analyses) while moving from South Dakota across Minnesota (and eventually over Ontario and western Quebec) during the 05 December08 December 2016 period. Storm total snowfall amounts included 16.0 inches in Montana, 19.0 inches in North Dakota and 13.9 inches in Minnesota; peak wind gusts were as high as 63 knots (72 mph) in South Dakota, 56 knots (64 mph) in North Dakota and 37 knots (43 mph) in Minnesota (KBIS PNS | KFGF PNS | WPC storm summary). In North Dakota, nearly the entire portion of both Interstates 94 and 29 were closed. The large size of the storm could be seen on GOES-13 (GOES-East) Water Vapor (6.5 µm) images (above).

A closer view using GOES-13 Water Vapor imagery with overlays of hourly reports of surface winds and wind gusts (below) showed that wind speeds remained strong enough to create travel-restricting blowing snow over eastern North Dakota and western Minnesota even into the early hours of 08 December (due to the continuing strong pressure gradient between the large low in Canada and the arctic high that was moving into Montana and Wyoming.

GOES-13 Water Vapor (6.5 µm) images, with hourly surface winds (yellow) and wind gusts in knots (red) [click to play animation]

GOES-13 Water Vapor (6.5 µm) images, with hourly surface winds (yellow) and wind gusts in knots (red) [click to play animation]

In the wake of the storm on 09 December, a southeastward flow of cold arctic air (with surface air temperatures in the 0 to -15º F range) over the still-unfrozen water of Lake Sakakawea (which exhibited MODIS Sea Surface Temperature values as warm as 37.9º F) caused lake effect cloud bands to form and extend downwind of the lake — these cloud bands were very evident in a comparison of 250-meter resolution Aqua MODIS true-color and false-color Red/Green/Blue (RGB) images from the MODIS Today site (below). In the false-color image, snow/ice appears as shades of cyan, in contrast to supercooled water droplet clouds which appear as shades of white. The 1.6 µm snow/ice band used to create the MODIS false-color image will also be available with the ABI instrument on the GOES-R series (beginning with GOES-16).

Aqua MODIS true-color and false-color RGB images [click to enlarge]

Aqua MODIS true-color and false-color RGB images [click to enlarge]

With a fresh, deep snow cover and cold arctic air in place, strong nocturnal radiational cooling allowed North Dakota to experience its first -30º F low temperatures of the season on the morning of 10 December. Aqua MODIS Land Surface Temperature values at 0939 UTC or 3:39 am local time (below) were as cold as -39º F (darker violet color enhancement) near the sites that reported the -30º F low temperatures.

Aqua MODIS Land Surface Temperature product [click to enlarge]

Aqua MODIS Land Surface Temperature product [click to enlarge]