Hurricane Lorenzo in the Atlantic Ocean

September 26th, 2019 |

 

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) images (above) showed Hurricane Lorenzo as it rapidly intensified from a Category 2 storm at 00 UTC to a Category 4 storm by 15 UTC (ADT | SATCON) on 26 September 2019.

A toggle between VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 as viewed using RealEarth (below) provided a detailed view of the eye and eyewall region of Lorenzo at 1542 UTC and 1632 UTC. On the Suomi NPP Infrared image, note the transverse banding northwest of the eye, and a small packet of gravity waves southwest of the eye.

VIIRS True Color RGB and Infrared Window<em> (11.45 µm)</em> images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP (at 1542 UTC) and NOAA-20 (at 1632 UTC) [click to enlarge]

A DMSP-18 SSMIS Microwave (85 GHz) image from the CIMSS Tropical Cyclones site (below) revealed a well-defined eyewall wrapping around the southern, eastern and northern periphery of the eye.

DMSP-18 SSMIS Microwave (85 GHz) image at 1941 UTC [click to enlarge]

DMSP-18 SSMIS Microwave (85 GHz) image at 1941 UTC [click to enlarge]

Severe thunderstorms in Arizona

September 23rd, 2019 |

GOES-17 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with surface reports plotted in cyan [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with surface reports plotted in cyan [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the development of severe thunderstorms over southern/central Arizona from 1600-1900 UTC on 23 September 2019. The far western storm exhibited a well-defined Above-Anvil Cirrus Plume (AACP) that extended northeastward from the cold overshooting top (whose coldest infrared brightness temperature was -74ºC); note that the AACP feature appeared colder (shades of yellow to orange) on the Infrared images (for example, at 1817 UTC).

As the western storm began to weaken somewhat, a new storm just to the east (located about 20-30 miles north-northeast of the Phoenix metro area) began to intensify, prompting the issuance of a Tornado Warning at 1914 UTC (the last tornado warning issued by NWS Phoenix was 21 January 2010) — a brief EF0 tornado was documented (NWS Phoenix summary).

GOES-17 “Clean” Infrared Window (10.35 µm) images, with surface reports plotted in cyan [click to play animation | MP4]

GOES-17 “Clean” Infrared Window (10.35 µm) images, with surface reports plotted in cyan [click to play animation | MP4]

Much of the moisture helping to fuel the development of this severe convection was from the remnants of Tropical Storm Lorena in the East Pacific Ocean — the northward transport of this moisture could be seen using the hourly MIMIC Total Precipitable Water product (below).

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product [click to play animation | MP4]


 

GOES-17 ABI Band 13 (10.35 µm) Clean Window Imagery and Derived Convective Available Potential Energy, 1501 – 1856 UTC on 23 September 2019 (Click to animate)

 

Stability parameters from GOES-16 showed that the reigon of thunderstorm development was just east of a strong gradient in Convective Available Potential Energy.  The animation above shows the GOES-17 Clean Window;  in regions of clear sky, the baseline Derived Stability Index CAPE is shown.  CAPE values are zero over much of California (except for the southeasternmost corner) but they increase rapidly over Arizona to values approaching 1000 J/kg.

On 23 September, skies were clear enough that an instability signal was obvious in the clear-sky baseline CAPE. An ‘All-Sky’ product has been developed that can be used on days with more widespread cloudiness; it is available at this link. Values of All-Sky CAPE at 1156 and 1556 UTC on 23 September are shown below, and they also show a sharp gradient in the instability, and the link down to moisture from Lorena’s remants.

‘All-Sky’ values of Convective Available Potential Energy (CAPE) at 1156 and 1556 UTC on 23 September 2019 (Click to enlarge)

NOAA/CIMSS ProbSevere is a product designed to indicate the likelihood that a given object will produce severe weather within the next 60 minutes. An animation of the product at 5-minute intervals, below, shows that the right-moving radar cell (also associated, as noted above, with an AACP) that developed over far southwestern Arizona (becoming a warned storm at 1647 UTC) was very likely to produce severe weather.

NOAA/CIMSS ProbSevere from 16:30 UTC to 18:00 UTC. Contours surrounding radar objects are color-coded such that pink/magenta contours are the highest probability.  Warning polygons (yellow for severe thunderstorm) are also shown (Click to enlarge)

Parameters that are used to determine the probability can be revealed at the ProbSevere site by mousing over the colored object contours.  The values for the warned storm over SW Arizona are shown below at 1650 UTC, 3 minutes after the warning was issued.  This image shows the 1710 UTC readout with the highest ProbWind value (76%); this image shows the 1725 UTC readout with the highest ‘ProbHail’ value (99%); ProbTor values on this day were not exceptionally large — for the later tornado-warned storm farther east, they were 28% at 1915 UTC and 30% at 1920 UTC.

NOAA/CIMSS ProbSevere display from 1650 UTC on 23 September 2019; parameters used in the probability computation, and Severe Thunderstorm Warning polygon parameters are also shown (Click to enlarge)

CIMSS is developing a machine-learning tool that combines ABI and GLM imagery (that is, only satellite data) to identify regions where supercellular thunderstorms capable of producing severe weather might be occurring. An mp4 animation for this event (courtesy John Cintineo, CIMSS) is shown below.  (This experimental product was also shown in this blog post)

Hurricane Dorian

August 28th, 2019 |

NOAA-20 Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images, courtesy of William Straka (CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above) showed cold overshooting tops (darker black infrared enhancement) over the Leeward Islands as well as subtle mesospheric airglow waves propagating southward away from the center of Tropical Storm Dorian at 0606 UTC on 28 August 2019.

In a toggle between GOES-16 (GOES-East) “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site (below), the Microwave image revealed a convective band that was wrapping around the northern portion of the center of Dorian at 0930 UTC.

GOES-16 "Clean" Infrared Window <em>(10.35 µm)</em> and DMSP-18 SSMIS Microwave <em>(85 GHz)</em> images [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) and DMSP-18 SSMIS Microwave (85 GHz) images [click to enlarge]

1-minute Mesoscale Domain Sector GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (below) also showed a convective burst wrapping around the eastern and northern edges of the center of Dorian after 15 UTC. The coldest cloud-top infrared brightness temperature associated with that early convective burst was -83ºC.

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Dorian was upgraded to a Category 1 Hurricane at 18 UTC. Prior to that time, the tropical cyclone had been moving through an environment of low deep-layer wind shear (below), one factor that is favorable for intensification. Dorian was also passing over water possessing warm sea surface temperatures and modest ocean heat content.

http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2019/08/.gifGOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

GOES-16 Infrared Window (10.35 µm) images, with contours of deep-layer wind shear at 19 UTC [click to enlarge]

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth are shown below, from around the time when Dorian was upgraded from a Tropical Storm to a Hurricane.

VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

A comparison of GOES-16 Infrared (at 2330 UTC) and GMI Microwave (at 2341 UTC) images (below) revealed Dorian’s small eye.

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

GOES-16 Infrared (10.35 µm) and GMI Microwave (85 GHz) images [click to enlarge]

===== 29 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

On 29 August, 1-minute GOES-16 Visible and Infrared images (above) showed that periodic convective bursts persisted around the center of Category 1 Hurricane Dorian.

During one of those convective bursts from 1800-1900 UTC, an increase in GOES-16 GLM Flash Extent Density was evident (below).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 Visible and Infrared images at 1852 UTC with and without an overlay of GLM Flash Extent Density are shown below. At that particular time, the overshooting top infrared brightness temperature reached a minimum value of -82.5C.

GOES-16 “Red” Visible (0.64 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Red” Visible (0.64 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1853 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

GOES-16 “Clean” Infrared Window (10.35 µm) image at 1852 UTC, with and without an overlay of GLM Flash Extent Density [click to enlarge]

===== 30 August Update =====

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

The eye of Dorian became more well-defined in 1-minute GOES-16 Visible and Infrared images (above) during the morning hours on 30 August.

A DMSP-17 Microwave (85 GHz) Microwave image at 1141 UTC (below) did not yet show a completely closed eyewall structure at that earlier time.

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) Microwave image [click to enlarge]

Dorian was upgraded to a Category 3 hurricane at 18 UTC — the storm was moving into a narrow corridor of weaker deep-layer wind shear around that time. During the 3 hours leading up to 18 UTC, animations of 1-minute GOES-16 Visible and Infrared imagery — with and without an overlay of GLM Flash Extent Density — are shown below.

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with and without overlays of GLM Flash Extent Density [click to play animation | MP4]

===== 31 August Update =====

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

30-second GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Overlapping 1-minute GOES-16 Mesoscale Domain Sectors provided imagery at 30-second intervals — Visible and Infrared animations of the Category 4 hurricane from 1430-1900 UTC are shown above and below, respectively. A longer Visible animation from 1100-2259 UTC is available here (courtesy of Pete Pokrandt, AOS).

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

30-second GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

Record Total Precipitable Water in Alaska

August 14th, 2019 |

Plot of rawinsonde data from Anchorage, Alaska [click to enlarge]

Plot of rawinsonde data from Anchorage, Alaska [click to enlarge]

Plot of rawinsonde data from Fairbanks, Alaska [click to enlarge]

Plot of rawinsonde data from Fairbanks, Alaska [click to enlarge]

Total Precipitable Water (TPW) calculated from rawinsonde data at both Anchorage and Fairbanks, Alaska were all-time record maximum values at 00 UTC on 14 August 2019.

The microwave-based MIMIC TPW product (below) showed an atmospheric river of moisture moving northeastward toward Alaska during the 2 days leading up to the record-setting TPW values on the Anchorage and Fairbanks soundings. The global view suggested that some of this moisture may have originated from the northern periphery of the TPW reservoir associated with slow-moving Typhoon Krosa in the West Pacific Ocean, being transported eastward then northeastward by a series of frontal waves (surface analyses).

MIMIC Total Precipitable Water [click to play animation | MP4]

MIMIC Total Precipitable Water [click to play animation | MP4]

MIMIC Total Precipitable Water [click to play animation | MP4]

MIMIC Total Precipitable Water [click to play animation | MP4]