Typhoon Soulik in the northwest Pacific Ocean

August 20th, 2018 |

Himawari-8 AHI Band 13 Clean Window (10.4 µm) imagery, 0900-1400 UTC on 18 August 2018 (Click to animate)

Typhoon Soulik, south of Japan and moving westward, has acquired a very large eye — almost 100 miles across! Himawari-8 imagery, above (courtesy JMA), shows the evolution and enlargement of the eye between 0900 and 1400 UTC on 20 August 2018.

GCOM, Suomi NPP and NOAA-20 all passed over Soulik between 1600 and 1715 UTC on 18 August. The Infrared Toggle, below, from NOAA-20 (1608 UTC) and Suomi NPP (1658 UTC) also shows a large eye.

NOAA-20 (1608 UTC) and Suomi NPP (1658 UTC) 11.45 µm Infrared Imagery of Soulik on 18 August 2018 (Click to enlarge)

Day Night Band Imagery from Suomi NPP, below, also shows a large eye. There was little lunar illumination occurring at the time because the moon was below the horizon.

Suomi NPP Day Night Band Visible (0.70 µm) Imagery over Soulik, 1658 UTC on 18 August 2018 (Click to enlarge)

GCOM overflew Soulik at 1702 UTC, and the AMSR-2 instrument on board gave estimates of rain rate, both convective and a the surface. Those are toggled below.

GCOM AMSR-2 Microwave estimates of Precipitation over Soulik, 1702 UTC on 18 August 2018 (Click to enlarge)

(Suomi NPP, NOAA-20 and GCOM imagery courtesy William Straka, CIMSS)

Soulik’s eye was wide enough that a NUCAPS soundings retrieval (Click here for more information on NUCAPS soundings) could be made from data collected during a Suomi-NPP overpass at 0350 UTC on 21 August 2018.  Note the green sounding location within Soulik’s eye — Green dots denote regions where the infrared retrieval was successful.  The sounding at that point is shown below. (NUCAPS imagery courtesy Landon Aydlett, WFO Guam).

Suomi NPP NUCAPS sounding locations at 0350 UTC on 21 August 2018 on top of AHI 10.4 µm Clean Window imagery (Click to enlarge)

Suomi NPP NUCAPS Sounding within the eye of Soulik at 0350 UTC on 21 August 2018 (Click to enlarge)

You can use NUCAPS Soundings to diagnose the difference between the environment in the storm eye, and in the surrounding environment. The animation below shows locations of 5 soundings, one in the Eye, and one north, east, south and west of the CDO.  The five selected soundings are shown at the bottom, with insets showing which sounding is which.  The sounding in the eye shows remarkable warmth, as expected.

Suomi NPP NUCAPS Sounding Points overlain on a Day Night Band Image, ~0350 UTC on 21 August 2018 (Click to enlarge). Sounding locations are indicated.

NUCAPS Soundings in and around Typhoon Soulik at the locations indicated, ~0350 UTC on 21 August 2018 (Click to enlarge)

Soulik’s path is projected to remain south of Japan and approach the Korean Peninsula by mid-week. For more information on Soulik, consult the CIMSS/SSEC Tropical Weather Website, or the Joint Typhoon Warning Center.

Hurricane Lane in the eastern Pacific Ocean

August 17th, 2018 |

NOAA-20 VIIRS Imagery at 1023 UTC on 17 August 2018. Day Night Band Visible (0.7 µm) and I05 Infrared (11.45 µm) imagery are shown (Click to enlarge)

The active eastern Pacific Hurricane season continues, as Lane has formed. Suomi NPP and NOAA-20 overflew the system early on 17 August 2018. The toggle above, from NOAA-20’s VIIRS Instrument, shows both the Day Night Band 0.70 µm visible Image and the 11.45 µm infrared channels. Lack of lunar illumination means that only Earthglow is making clouds visible; a distinct eye is not present. The step animation below between the NOAA-20 11.45 µm infrared and, 50 minutes later, Suomi NPP’s 11.45 µm Infrared, right at the limb of the scan, also show no distinct eye.

VIIRS I05 11.45 µm Infrared Imagery from NOAA-20 (1023 UTC) and Suomi NPP (1113 UTC) on 17 August 2018 (Click to enlarge)

In fact, however, an eye was likely present at this time. As noted in the National Hurricane Center’s 0900 UTC Discussion (Link), “Recent microwave images show a well-defined low-level eye, but this feature is not yet apparent in geostationary satellite images.”  AMSR-2 (Advanced Microwave Scanning Radiometer 2) estimates of Convective Precipitation and Surface Rainfall in the toggle below (data from 1003 UTC) show a distinct eye.  AMSR-2 is a microwave instrument that flies on JAXA’s GCOM satellite;  microwave views of tropical cyclones are able to penetrate the cirrus shield that is commonly present, revealing important information about the low-level structure of a developing system.

GCOM AMSR-2 estimates of convective precipitation and surface rainfall rates at 1003 UTC on 17 August 2018 (Click to enlarge)

Polar Orbit tracks are available here. For the latest information on Hurricane Lane, refer to the National Hurricane Center or to the CIMSS/SSEC Tropical Weather Website. Imagery from Polar Orbiters are available at this site that shows data from an antenna in Honolulu.

Thank you to William Straka, CIMSS, for the imagery.

Stereoscopic view of Severe Convection over Nebraska

August 16th, 2018 |

GOES-16 (Left) and GOES-17 (Right) Visible (0.64 µm) Imagery over Nebraska, 1902 UTC 15 August – 0157 UTC 16 August 2018 (Click to play mp4 animation)

GOES-17 Data shown in this post are preliminary and non-operational!

A Strong thunderstorm developed over Nebraska on 15 August (read more below), depositing baseball-sized hail in Arthur County. This storm was sampled by a GOES-16 Mesoscale sector, and the 1-minute imagery allowed views of the rotating updraft (Link). The stereoscopic view above, from the GOES-16 and GOES-17 CONUS sectors, shows the development and evolution of the storm at 5-minute increments (Click here for animated gif). To view the storm in three dimensions, cross your eyes until you view 3 images, and focus on the image in the middle. This storm develops the above-anvil cirrus plume that has been shown to be associated with severe weather, as in this case.

Stereoscopic views of convection along the Texas Gulf Coast

August 8th, 2018 |

GOES-16 (left) and GOES-17 (right) visible (0.64 µm) imagery showing convection near Houston TX on 8 August 2018 (Click to play mp4 animation)

GOES-17 Imagery in this post is preliminary and non-operational.

GOES-16, operational as GOES-East at 75.2º W Longitude, and GOES-17, in a check-out mode at 89.5º W Longitude, viewed convection in and around Houston TX (apparent in the clear skies at the start of the animation) on 8 August 2018 (Click here for animated gif). Stereoscopic views of this convection (achieved by crossing your eyes until 3 images appears, and focusing on the image in the middle) reveal the three-dimensional nature of the convection, in particular the effects of an outflow boundary propagating northward towards Houston.