This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Lake Michigan Mesovortex

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a well-defined mesoscale vortex (or “mesovortex”) moving southward across southern Lake Michigan on 31 December 2017. The default western GOES-16 Mesoscale Sector provided images at 1-minute intervals. This feature was responsible for brief periods of heavy snow at locations such as South Haven, Michigan KLWA... Read More

1-minute GOES-16

1-minute GOES-16 “Red” Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a well-defined mesoscale vortex (or “mesovortex”) moving southward across southern Lake Michigan on 31 December 2017. The default western GOES-16 Mesoscale Sector provided images at 1-minute intervals. This feature was responsible for brief periods of heavy snow at locations such as South Haven, Michigan KLWA (beginning at 1455 UTC), Benton Harbor, Michigan KBEH (beginning at 1625 UTC) and La Porte, Indiana KPPO (from 2055 to 2115 UTC).

Comparisons of POES AVHRR/Terra MODIS/Suomi NPP Infrared (10.8 µm/11.0 µm/11.45 µm) and Visible (0.86 µm/0.65 µm/0.64 µm) images along with an overlay of the corresponding Real-Time Mesoscale Analysis (RTMA) surface winds (below) provided views of the mesovortex at 1522 UTC, 1714 UTC and 1852 UTC, respectively.

POES AVHRR Infrared (10.8 µm) and Visible (0.86 µm) images at 1522 UTC, with 15 UTC RTMA surface winds [click to enlarge]

POES AVHRR Infrared (10.8 µm) and Visible (0.86 µm) images at 1522 UTC, with 15 UTC RTMA surface winds [click to enlarge]

Terra MODIS Infrared (11.0 µm) and Visible (0.65 µm) images at 1714 UTC, with 17 UTC RTMA surface winds [click to enlarge]

Terra MODIS Infrared (11.0 µm) and Visible (0.65 µm) images at 1714 UTC, with 17 UTC RTMA surface winds [click to enlarge]

Suomi NPP Infrared (11.45 µm) and Visible (0.64 µm) images at 1852 UTC, with 19 UTC RTMA surface winds [click to enlarge]

Suomi NPP Infrared (11.45 µm) and Visible (0.64 µm) images at 1852 UTC, with 19 UTC RTMA surface winds [click to enlarge]

During the preceding nighttime hours, a comparison of Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC along with an overlay of 07 UTC RTMA surface winds (below) showed in spite of patchy thin cirrus clouds over the region, ample illumination from the Moon (which was in the Waxing Gibbous phase, at 96% of Full) enabled a signature of the early stage of mesovortex formation to be seen on the Day/Night Band (DNB) image. Ice crystals within the thin cirrus clouds were responsible for the significant scattering city light signatures on the DNB image.

Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC, with 07 UTC RTMA surface winds [click to enlarge]

Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC, with 07 UTC RTMA surface winds [click to enlarge]

As an aside, it is interesting to note that ice could be seen in the nearshore waters of Lake Michigan — both in the western part of the lake, off the coast of Wisconsin and Illinois, and in the eastern part of the lake off the coast of Lower Michigan. The lake ice appeared as darker shades of cyan in the 250-meter resolution Terra MODIS false-color (Band 7-2-1 combination) Red-Green-Blue (RGB) image from the MODIS Today site (below).

Terra MODIS true-color and false-color images over southern Lake Michigan [click to enlarge]

Terra MODIS true-color and false-color images over southern Lake Michigan [click to enlarge]

View only this post Read Less

Mixed-phase stratiform clouds in an arctic air mass

An AWIPS screen capture showing GOES-16 (GOES-East) Cloud Top Phase, Near-Infrared “Snow/ice” (1.61 µm), Cloud Phase brightness temperature difference (8.5 µm11.2 µm) and “Clean” Infrared Window (10.3 µm) images on 28 December 2017 (above) was provided by Dan Baumgardt and Dave Schmidt (NWS La Crosse) — they were inquiring as to the why the 1.61 µm... Read More

AWIPS screen capture of GOES-16 Cloud Top Phase (top left), Near-Infrared

AWIPS screen capture of GOES-16 Cloud Top Phase product (top left), Near-Infrared “Snow/ice” (1.61 µm, top right), Cloud Phase brightness temperature difference (8.5 – 11.2 µm, bottom left) and “Clean” Infrared Window (10.3 µm, bottom right) images [click to enlarge]

An AWIPS screen capture showing GOES-16 (GOES-East) Cloud Top Phase, Near-Infrared “Snow/ice” (1.61 µm), Cloud Phase brightness temperature difference (8.5 µm11.2 µm) and “Clean” Infrared Window (10.3 µm) images on 28 December 2017 (above) was provided by Dan Baumgardt and Dave Schmidt (NWS La Crosse) — they were inquiring as to the why the 1.61 µm Snow/Ice imagery appeared bright across southern Minnesota (suggesting cloud tops composed primarily of supercooled water droplets), where light snow was being reported at a number of locations. Note that the Cloud Top Phase product also indicated that much of the stratus cloud deck over that same region was either Supercooled (light green) or Mixed (dark green).

An animation of GOES-16 Snow/Ice (1.61 µm) imagery (below) showed that the high reflectance (brighter white) signature of the lower-altitude stratiform cloud deck persisted across southern Minnesota into western Wisconsin and northern Iowa during the daylight hours, along with widespread surface reports of light snow. In contrast, higher-altitude clouds composed predominantly or entirely of ice crystals exhibited a darker gray appearance (since ice crystals, as well as surface snow cover and frozen lakes/rivers, are strong absorbers of radiation at the 1.61 µm wavelength).

GOES-16 Near-Infrared "Snow/Ice" (1.61 µm) images, with hourly surface-observed precipitation type plotted in yellow [click to play MP4 animation]

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm) images, with hourly surface-observed precipitation type plotted in yellow [click to play MP4 animation]

In the corresponding GOES-16 “Clean” Infrared Window (10.3 µm) animation (below), much of the aforementioned lower-altitude stratiform cloud layer exhibited cloud-top infrared brightness temperatures in the -10 to -20 ºC range across far southern Minnesota into northern Iowa, with colder -20 to -30 ºC values seen in the more northern and eastern portion of the stratus cloud.

GOES-16 "Clean" Infrared Window (10.3 µm) images, with hourly surface-observed precipitation type plotted in yellow [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly surface-observed precipitation type plotted in yellow [click to play MP4 animation]

Plots of rawinsonde data (at 12 UTC on 28 December) from Aberdeen, South Dakota and Chanhassen, Minnesota (below) showed that the temperature profiles within the low-altitude cloud layers were close to isothermal, with air temperatures generally in the -16 to -22 ºC range.

Rawinsonde data from Aberdeen, South Dakota [click to enlarge]

Rawinsonde data from Aberdeen, South Dakota [click to enlarge]

Rawinsonde data from Chanhassen, Minnesota [click to enlarge]

Rawinsonde data from Chanhassen, Minnesota [click to enlarge]

So how could snow be falling from stratus clouds whose tops appeared be be composed of supercooled water droplets? A journal article titled “Vertical Motions in Arctic Mixed-Phase Stratiform Clouds” demonstrated that in-cloud glaciation can and does occur below the supercooled liquid cloud top in an arctic air mass. This example certainly shows that in an arctic air mass, mixed/supercooled cloud above snow or ice cloud is possible, particularly in temperatures between -20 ºC and -30 ºC — and cloud phase classification for operational decisions must sometimes look beyond the examination of single-band satellite imagery (or even derived products such as Cloud Phase).

Thanks to Mike Pavolonis (NOAA/NESDIS/CIMSS) and Jordan Gerth (CIMSS) for their insightful explanations regarding cloud phase — and thanks to the NWS La Crosse staff for bringing this interesting case to our attention!

View only this post Read Less

Record-setting lake effect snow event at Erie, Pennsylvania

GOES-16 “Clean” Infrared Window (10.3 µm) images centered over Lake Erie (above) showed the evolution of lake effect snow bands on 25 December26 December 2017, which produced very heavy snowfall at locations such as Erie, Pennsylvania (station identifier KERI); a Mesoscale Sector provided images at 1-minute intervals. Some noteworthy snowfall records were set... Read More

1-minute GOES-16 "Clean" Infrared Window (10.3 µm) images, with hourly surface reports plotted in cyan/yellow [click to play MP4 animation]

1-minute GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly surface reports plotted in cyan/yellow [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.3 µm) images centered over Lake Erie (above) showed the evolution of lake effect snow bands on 25 December26 December 2017, which produced very heavy snowfall at locations such as Erie, Pennsylvania (station identifier KERI); a Mesoscale Sector provided images at 1-minute intervals. Some noteworthy snowfall records were set at Erie PA:

(27 December Update: additional lake effect snow at Erie on 27 December brought the final storm total accumulation to 65.1 inches: NWS Cleveland summary. NOHRSC plots showed a maximum snow depth of 49 inches just southwest of downtown Erie; the maximum snow depth at Erie International Airport was 28 inches on 26 December, which was still less than their all-time record snow depth of 39 inches on 21 December 1989)

A sequence of Infrared Window images captured by Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) is shown below. The coldest cloud-top infrared brightness temperatures associated with the dominant lake effect snow bands were in the -30 to -35 ºC range (dark blue to pale green color enhancement), similar to what was seen in the GOES-16 Infrared Window imagery.

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm), with surface reports plotted in yellow [click to enlarge]

Infrared Window images from Terra/Aqua MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm), with surface reports plotted in yellow [click to enlarge]

Farther to the northeast, these Lake Erie lake effect bands also produced significant snowfall in far southwestern New York, with 32 inches reported at Perrysburg (located 20 miles west of Dunkirk, station identifier KDKK). In addition, lake effect snow bands over Lake Ontario were responsible for even higher snowfall amounts:


1-minute GOES-16 “Red” Visible (0.64 µm) images (below) showed the lake effect snow bands over Lake Ontario on 26 December.

1-minute GOES-16 "Red" Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

1-minute GOES-16 “Red” Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

View only this post Read Less

GOES-16 signatures of a SpaceX rocket launch

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Shortwave Infrared (3.9 µm) images (above) revealed signatures of a SpaceX Falcon 9 rocket launch at 01:27 UTC on 23 December 2017 (5:27 PM Pacific time on 22 December). The arrows on the 01:27:24 UTC images indicate the bright pixels on the 0.64 µm and 1.61... Read More

GOES-16 Near-Infrared

GOES-16 “Red” Visible (0.64 µm, top), Near-Infrared “Snow/Ice” (1.61 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images, with plots of 01 UTC surface observations [click to play animation]

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Shortwave Infrared (3.9 µm) images (above) revealed signatures of a SpaceX Falcon 9 rocket launch at 01:27 UTC on 23 December 2017 (5:27 PM Pacific time on 22 December). The arrows on the 01:27:24 UTC images indicate the bright pixels on the 0.64 µm and 1.61 µm images, as well as the warm thermal anomaly (black pixels) on the 3.9 µm image. GOES-16 was scanning that exact location at 01:28:01 UTC.

The GOES-16 Shortwave Infrared signature was noted by a couple of NWS offices:

Signatures of another SpaceX rocket launch in Florida were captured by GOES-16 on 16 March 2017.

View only this post Read Less