Flooding along the Tittabawassee River in Michigan

May 20th, 2020 |

GOES-16 ABI Band 2 (0.64 µm), Band 3 (0.86 µm) and CIMSS Natural Color at 1521 UTC on 20 May 2020 (Click to enlarge)

Dam failures in central lower Michigan along the Tittabawassee River (one of the rivers in the Saginaw Bay basin) caused extensive flooding on 20 May 2020 in Midland County, including the city of Midland. Much of this region received between 4 and 5 inches of rain in the past week (analysis, from this site). The Tittabawassee River gauge at Midland (shown here, from this site), was projected to exceed its previous maximum by 4 feet (It ended up exceeding it by just over 1 foot).  The heavy rains have produced a notable silt plume into Saginaw Bay in the imagery above (a plume that is rotating cyclonically).

GOES-16’s Advanced Baseline Imager (ABI) has spatial and spectral resolution to identify flooded regions near Midland, as shown in the imagery above from 1521 UTC on 20 May.  Of special note are the dark pixels very close to Midland MI in the 0.86 µm imagery (shown here with a map)   Water is more reflective in the visible (0.64 µm) than in the near-infrared (0.86 µm) (Compare the darkness of Lake Huron in those two channels) so when areas are flooded, they acquire a darker reflectance value.  A more zoomed-in toggle, below, between Visible (0.64 µm) and 0.86 µm imagery highlights the reflectance differences near Midland where flooding is occurring.  Flooded regions are also apparent south of Saginaw, to the south and east of Midland County.

GOES-16 VIsible (0.64 µm) and Near-Infrared (0.86 µm) at 1521 UTC on 20 May 2020. Midland County is outlined. (Click to enlarge)

Real Earth includes Flood Products that are derived from ABI and from the VIIRS Instrument (the Visible-Infrared Imaging Radiometer Suite) on NOAA-20 and Suomi NPP. The ABI-only product, below, taken from that site, shows the regions of flooding.

ABI Flood Product, 1400 UTC on 20 May 2020 (Click to enlarge)

This link (courtesy Tim Schmit, NOAA/CIMSS) compares Band 3 (0.86 µm) imagery from before and during the flood (13 and 20 May 2020).  VIIRS true-color imagery, below, processed at the Direct Broadcast antenna at CIMSS, also show the changes from 13 May to 20 May.

VIIRS True Color Imagery over and near Saginaw Bay in lower Michigan on 13 and 20 May 2020 (click to enlarge)

The Flood Areal Extent processed from VIIRS data is shown below.  Both ABI and VIIRS products are available via LDM feed (in addition to being available in Real Earth and in GeoNETCAST). The Project Website is here. Tim Schmit has created a slider between the ABI and VIIRS flood product here.

VIIRS Flood Areal Extent product, 20 May 2020 (Click to enlarge)

The National Weather Service in Detroit is issuing flood warnings for this event. Midland County is in their County Warning Area.


Shane Hubbard at UW-Madison/CIMSS has created an arcGIS website that shows the areal extent of the flooding.  That site is here.  A screen capture is shown below.

Arcgis view of flooded regions near Midland and Saginaw MI from the 20 May 2020 Dam Break.

Satellite detection of this event is also discussed here.

Severe thunderstorms in Texas and Oklahoma

May 20th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of widespread thunderstorms that produced tornadoes, large hail (up to 5.5 inches in diameter in Texas) and damaging winds (as high as 94 mph in Oklahoma) (SPC storm reports) across parts of Texas and Oklahoma on 20 May 2019.

The corresponding GOES-16 “Clean” Infrared Window (10.35 µm) images (below) indicated that cloud-top infrared brightness temperatures were frequently as cold as -70 to -80ºC (black to white to violet enhancement) with the more vigorous thunderstorms.

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 "Red" Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

Zoomed-in versions of the Visible images (above) and Infrared images (below) are centered at Childress, Texas — which provide a better view of the storms which produced the 5.5-inch hail (Visible | Infrared) at Wellington, Texas and the large tornado near Magnum, Oklahoma (Visible | Infrared | YouTube video).

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

One interesting aspect of this line of deep convection: it was effectively acting as an obstacle to the upstream southwesterly flow, resulting in the formation of a quasi-stationary band of gravity waves along its western edge — these waves were very evident in GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Split Window Difference (10.3-12.3 µm) images (below) displayed the yellow signature of blowing dust in the vicinity of a cold front that was moving eastward across southeastern New Mexico and southwestern Texas. Blowing dust restricted surface visibility to 3 miles or less at El Paso in Texas and at Alamagordo and Artesia in New Mexico.

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

During the subsequent overnight hours, these thunderstorms produced heavy rainfall from northern Oklahoma into southern Kansas, causing flash flooding — and flooding from rising rivers across that region on the following day were captured by the Suomi NPP VIIRS Flood Detection Product (below).

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

The river flooding in northern/northwestern Oklahoma was also evident in a before/after comparison of Terra MODIS False Color RGB images from 15 May and 21 May (below). Water appears as darker shades of blue in the False Color images.

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]

River flooding in the Lower Mississippi and Tennessee River Valley

February 24th, 2019 |

30-day Precipitation and Percent of Normal Precipitation [click to enlarge]

30-day Precipitation and Percent of Normal Precipitation [click to enlarge]

A toggle between Observed Precipitation and Percent of Normal Precipitation for the 30-day period ending at 12 UTC on 24 February 2019 (above) showed a large area that received 10-15 inches of rainfall — which was 200-400% of normal — across the Lower Mississippi River and Tennessee River Valleys.

A before/after comparison of Terra MODIS False Color Red-Green-Blue (RGB) images from 25 January and 24 February 2019 (below) revealed the extensive area of flooding that resulted. Flooded areas appear as varying shades of blue on the False Color imagery (source).

Terra MODIS False Color RGB images from 25 January and 24 February 2019 [click to enlarge]

Terra MODIS False Color RGB images from 25 January and 24 February 2019 [click to enlarge]

In a comparison of Terra MODIS True Color and False Color RGB images from 24 February (below), many of the flooded rivers exhibit a tan-colored appearance in the True Color image due to large amounts of sediment suspended in the water.

Terra MODIS True Color and False Color RGB images from 24 February [click to enlarge]

Terra MODIS True Color and False Color RGB images from 24 February [click to enlarge]

A Flood Map derived using NOAA-20 VIIRS data (below) quantitatively showed the extent of the flooding. CIMSS scientists Jay Hoffman and William Straka contributed to the development of this food monitoring product.

NOAA-20 VIIRS Flood Map [click to enlarge]

NOAA-20 VIIRS Flood Map [click to enlarge]

Flood wave along the Nueces River in Texas

October 27th, 2018 |

As pointed out by NWS Corpus Christi (above), GOES-16 (GOES-East) Near-Infrared “Vegetation” (0.86 µm) images revealed an interesting flood wave moving along the Nueces River on 27 October 2018 (following a recent period of heavy rainfall).

A toggle between before (10 October) and after (27 October) Aqua MODIS False Color Red-Green-Blue (RGB) images from the MODIS Today site (below) showed dramatic differences between the amount of water (darker shades of blue) flowing along portions of the Nueces River on those 2 days.

Before (10 October) and after (27 October) Aqua MODIS False Color RGB images [click to enlarge]

Before (10 October) and after (27 October) Aqua MODIS False Color RGB images [click to enlarge]

A comparison of Suomi NPP VIIRS Visible (0.64 µm), Near-Infrared Vegetation (0.86 µm) and Near-Infrared Snow/Ice (1.61 µm) images from 27 October (below) demonstrated the improved land/water contrast of the Near-Infrared imagery, which makes it helpful for diagnosing certain types of flooding signatures.

Suomi NPP VIIRS Visible (0.64 µm), Near-Infrared Vegetation (0.86 µm) and Near-Infrared Snow/Ice (1.61 µm) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Near-Infrared Vegetation (0.86 µm) and Near-Infrared Snow/Ice (1.61 µm) images [click to enlarge]

===== 28 October Update =====

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Vegetation” (0.86 µm) images at 1552 UTC on 27 and 28 October [click to enlarge]

A toggle between GOES-16 Near-Infrared “Vegetation” (0.86 µm) images at 1552 UTC on 27 and 28 October (above) showed the advance of the flood wave during that 24-hour period.

A comparison of Suomi NPP VIIRS Near-Infrared “Vegetation (0.86 µm) and “Snow/Ice” (1.61 µm) images from the early afternoon hours on 27 and 28 October (below) displayed these 24-hour changes at a higher spatial resolution (375 meters, vs 1 km at satellite subpoint with GOES-16). The rear edge of the flood wave (located about 25 miles southeast of Cotulla) appeared to show up a bit better in the 0.86 µm images than the 1.61 µm.

Suomi NPP VIIRS Near-Infrared

Suomi NPP VIIRS Near-Infrared “Vegetation (0.86 µm) and “Snow/Ice” (1.61 µm) images from 27 and 28 October [click to enlarge]

Finally, in a toggle between 250-meter resolution Aqua MODIS False Color RGB images from 27 and 28 October (below), the advance of the leading edge of the flood wave can clearly be seen.

Aqua MODIS False Color RGB images from 27 and 28 October [click to enlarge]

Aqua MODIS False Color RGB images from 27 and 28 October [click to enlarge]

===== 29 October Update =====

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Vegetation” (0.86 µm) images from 1552 UTC on 27, 28 and 29 October [click to enlarge]

GOES-16 Near-Infrared “Vegetation” images from 1552 UTC on 27, 28 and 29 October (above) showed the continued eastward movement of the flood wave down the Nueces River.