Hurricane Force low pressure system off the US East Coast

April 1st, 2020 |

GOES-16 “Red” Visible (0.64 µm), Mid-level Water Vapor (6.9 µm) and Air Mass RGB images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm), Mid-level Water Vapor (6.9 µm) and Air Mass RGB images [click to play animation | MP4]

A sequence of GOES-16 (GOES-East) “Red” Visible (0.64 µm), Mid-level Water Vapor (6.9 µm) and Air Mass Red-Green-Blue (RGB) mages (above) showed an occluding Hurricane Force low pressure system (surface analyses) off the US East Coast on 01 April 2020. In the Air Mass RGB images, darker red areas just south of the storm center indicated the presence of higher amounts of total column ozone, brought about by a lowering tropopause — RAP40 model fields of the PV1.5 pressure (representing the height of the “dynamic tropopause”) suggested that the tropopause had descended below the 500 hPa pressure level later in the day.

The hurricane-force winds at the surface were creating seas as high as 33 feet. The milky/hazy signature of a highly-agitated sea surface + sea spray — immediately south of the convection around the core of the storm — was evident in GOES-16 True Color RGB images, created using Geo2Grid (below).

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 Visible images with an overlay of GLM Flash Extent Density (below) revealed that lightning activity gradually decreased within convection surrounding the core of the low during the day.

GOES-16 “Red” Visible (0.64 µm), Mid-level Water Vapor (6.9 µm) and Air Mass RGB images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images with an overlay of GLM Flash Extent Density [click to play animation | MP4]

As the storm was becoming organized near the Southeast US coast during the preceding overnight hours, a toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0627 UTC (below) showed widespread mesospheric airglow waves in the Day/Night Band — these waves were likely generated by the approach of an upper-tropospheric jet streak.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Addition information about this event is available on the Satellite Liaison Blog.

Developing winter storm over Colorado

March 19th, 2020 |

GOES-16 Mid-level Water Vapor (6.9 um) images, with hourly plots of surface wind barbs and gusts (knots) [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 um) images, with hourly plots of surface wind barbs and gusts (knots) [click to play animation | MP4]

As a winter storm began to organize over Colorado on 19 March 2020, GOES-16 (GOES-East) Mid-level Water Vapor (6.9 um) images (above) showed the developing  middle tropospheric cyclonic circulation across the Colorado/Kansas/Nebraska border area. Peak wind gusts included 60 mph in Colorado and Nebraska, and 62 mph in Kansas (WPC Storm Summary).

As a result of the strong winds, several areas of blowing dust were seen in GOES-16 “Red” Visible (0.64 um), Split Window Difference (10.3-12.3 um) and Dust Red-Green-Blue (RGB) images (below): (1) a well-defined plume that originated in southeastern Colorado and moved northeastward across western Kansas, (2) a smaller plume originating north/northwest of Lamar, Colorado which moved eastward toward the Colorado/Kansas border, (3) a small plume that originated over the burn scar from the 07 March “Beaver Fire” in the Oklahoma Panhandle, and (4) multiple narrow plumes of dust in the wake of a cold front that moved southeastward across the region late in the day (which reduced the surface visiblity to 2 miles in southwestern Kansas).

GOES-16

GOES-16 “Red” Visible (0.64 um), Split Window Difference (10.3-12.3 um) and Dust RGB images [click to play animation | MP4]

A NOAA-20 True Color RGB image as viewed using RealEarth (below) provided a more detailed view of the dust plume north of Lamar, Colorado as well as the longer plume which stretched from southeastern Colorado into western Kansas.

NOAA-20 True Color RGB image at 18:40 UTC [click to enlarge]

NOAA-20 True Color RGB image at 18:40 UTC [click to enlarge]

GOES-16 Visible images with plots of GLM Groups (below) revealed a few clusters of lightning associated with convective elements that were likely producing thundersnow across northeastern Colorado and near the Colorado/Nebraska border. Where warmer air was still present near the Colorado/Kansas border, a more longer-lived thunderstorm was producing rainfall at the surface.

GOES-16

GOES-16 “Red” Visible (0.64 um) images, with GLM Groups plotted in red and hourly surface weather type plotted in yellow [click to play animation | MP4]



===== 20 March Update =====

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

On the following day, GOES-16 Day Cloud Phase Distinction RGB images (above) showed the large swath of fresh snow cover (shades of green) produced by this storm as it moved northeastward across the Upper Midwest. Clouds persisted over much of eastern Colorado, masking the extent of the snow cover there.

===== 21 March Update =====

Landsat-8 False Color RGB image, with and without labels [click to enlarge]

Landsat-8 False Color RGB image at 1724 UTC, with and without labels [click to enlarge]

On 21 March, a decrease in cloudiness over eastern Colorado allowed much of the snow cover (shades of cyan) to be seen in a swath of 30-meter resolution Landsat-8 False Color imagery as viewed using RealEarth (above). The effects of terrain were evident, with a lack of snow cover seen in areas where downslope flow was prevalent during the winter storm.

Early-season winter storm in the Northern Plains

October 12th, 2019 |

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly surface weather type plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly surface weather type plotted in red [click to play animation | MP4]

With the approach of an anomalously-deep 500 hPa low, an early-season winter storm produced very heavy snowfall and blizzard conditions across the Northern Plains — particularly in central/eastern North Dakota and southern Manitoba — during the 10 October12 October 2019 period. GOES-16 (GOES-East) Mid-level Water Vapor (6.9 µm) images (above) showed the long duration of precipitation across that region. Text listings of snowfall totals and wind gusts are available from WPC, NWS Bismarck and NWS Grand Forks (more complete storm summaries: NWS Bismarck | NWS Grand Forks). The highest storm total snowfall amount in far southern Manitoba was 32 inches south of Morten (which reported a snow depth of 30 inches on the morning of 12 October), with 30 inches in central North Dakota at Harvey.

GOES-16 “Red” Visible (0.64 µm) images (below) displayed the storm during the daylight hours on 10/11/12 October.

GOES-16 "Red" Visible (0.64 µm) images on 10/11/12 October, with hourly precipitation type plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images on 10/11/12 October, with hourly precipitation type plotted in red [click to play animation | MP4]

On 11 October, GOES-16 Visible images with an overlay of GLM Flash Extent Density (below) revealed intermittent clusters of lightning activity over northwestern Minnesota, northeastern North Dakota and southern Manitoba — while no surface stations explicitly reported a thunderstorm, NWS Grand Forks received calls from the public about thundersnow. The texture of cloud tops in the Visible imagery also supported the presence of embedded convective elements, which likely enhanced snowfall rates as they pivoted across that area. An animation of GOES-16 Visible imagery with plots of GLM Groups and surface weather type is available here.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with an overlay of GLM Flash Extent Density [click to play animation | MP4]

Note that this lightning-producing convection was occurring near the leading edge of the cyclone’s mid-tropospheric dry slot, as seen in GOES-16 Water Vapor imagery (below).

GOES-16 "Red" Visible (0.64 µm, left) and Mid-level Water Vapor (6.9 µm, right) images, with GLM Groups plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, left) and Mid-level Water Vapor (6.9 µm, right) images, with GLM Groups plotted in red [click to play animation | MP4]

One important aspect of this storm was the formation of a TROugh of Warm air ALoft or TROWAL (SHyMet | Martin, 1998) as the surface low began to enter its occluded phase on 11 October — contours of Equivalent Potential Temperature along the 295 K isentropic surface (below) helped to diagnose the axis of the TROWAL as it curved cyclonically from southwestern Ontario to southern Manitoba and then southward over North Dakota.

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K equivalent potential temperature contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Equivalent Potential Temperature contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

A similar animation with contours of 295 K specific humidity (below) also displayed the orientation of a west-to-east cross section B-B’ (green) across northern Northern Minnesota and northern Minnesota.

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Specific Humidity contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with 295 K Specific Humidity contours plotted in yellow and surface fronts plotted in red [click to play animation | MP4]

The Line B-B’ cross section at 16 UTC (with and without contours of Equivalent Potential Temperature) is shown below. Note the deep column of upward vertical velocity (highlighted by color shading of Omega) centered over Langdon, North Dakota — the moist TROWAL airstream can be seen sloping isentropically upward and westward behind the 3 g/kg Specific Humidity contour, as it approached the region of upward vertical motion. Langdon received 27 inches of snowfall; the prolonged southward passage of the TROWAL over North Dakota likely contributed to this accumulation.

Cross section of RAP40 model fields along Line B-B' at 16 UTC [click to enlarge]

Cross section of RAP40 model fields along Line B-B’ at 16 UTC [click to enlarge]

As the storm was gradually winding down on 12 October, its circulation exhibited a very broad middle-tropospheric signature on GOES-16 Water Vapor imagery (below).

GOES-16 Mid-level Water Vapor (6.9 µm) images, with surface frontal positions [click to play animation]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with surface frontal positions [click to play animation | MP4]

===== 17 October Update =====

Aqua MODIS True Color and False Color RGB images [click to enlarge]

Aqua MODIS True Color and False Color RGB images [click to enlarge]

After the area had already experienced its wettest Fall season on record, additional rainfall and snowmelt from this winter storm exacerbated ongoing flooding problems. A comparison of 250-meter resolution Aqua MODIS True Color and False Color Red-Green-Blue (RGB) images (source) centered over northeastern North Dakota (above) revealed flooding along the Red River (which flows northward along the North Dakota / Minnesota border) — water appears as darker shades of blue in the False Color image.

A Suomi NPP VIIRS Flood Product depicting floodwater fractions in the Red River Valley north of Grand Forks ND (as visualized using RealEarth) is shown below.

Suomi NPP VIIRS Flood Product, depicting floodwater fractions in the Red River Valley north of Grand Forks, ND [click to enlarge]

Suomi NPP VIIRS Flood Product, depicting floodwater fractions in the Red River Valley north of Grand Forks, ND [click to enlarge]

===== 18 October Update =====

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

GOES-16 Day Cloud Phase Distinction RGB images [click to play animation | MP4]

On 18 October — 1 week after the height of the historic blizzard — GOES-16 Day Cloud Phase Distinction RGB images showed significant snow cover (brighter shades of green) remaining in parts of northeastern North Dakota and southern Manitoba that received the highest storm total snowfall accumulations (for example, 32″ south of Morden MB, 29″ at Vang ND, 28″ at Olga ND and 27″ at Langdon ND). The site south of Morden MB reported a residual snow depth of 10 inches that morning.

The probability of “intense convection” using geostationary satellite data

September 27th, 2019 |

Researchers from NOAA and UW-CIMSS have developed an experimental model that predicts the “probability of intense convection” inferred from GOES ABI and GLM fields. The model is a convolutional neural network, which carries the assumption that the inputs are images and have spatial context. It is a great tool for image classification.

GOES-16 ABI CH02 reflectance (a visible channel), ABI CH13 brightness temperature (an infrared window channel [IR]), and GLM flash extent density (FED; generated using glmtools),  were used as inputs to the model. The model learned important features that have been traditionally difficult or expensive to code into an algorithm, such as pronounced overshooting tops (OTs), enhanced-V features, thermal couplets, above-anvil cirrus plumes (AACPs), strong brightness temperature gradients, cloud-top divergence, and texture from visible reflectance.

It is hoped that such a model may be able to one day:

  • provide earlier notice of developing or decaying intense convection
  • provide guidance in regions with no weather radars
  • provide a quantitative way to leverage 1-min mesoscale scans
  • ultimately improve the accuracy and lead time of severe weather warnings

The model is very experimental and is not yet running in real-time. The remainder of this post catalogues some examples of the deployed model on select scenes.

The movies below use as a background the CH02-CH13 “sandwich” product, whereby cloud-top 11-µm brightness temperature and 0.64-µm reflectance can be seen in tandem. This generally helps observers see how changes in storm-top structure correlate with changes in 11-µm brightness temperature. A grid of “probability of intense convection” was generated for each scene with a moving 32×32 pixel window (each pixel = ~2 km), with the model generating one probability for each window. These probabilities were then contoured with the 25%, 50%, and 90% contours as blue, cyan, and magenta. Preliminary severe local storm reports from the SPC rough log are also plotted as circles.

The example below shows that the model handled two separate severe wind threats in Missouri, identifying cold cloud top regions in the IR that also looked “bubbly” from the visible channel. As the sun was setting, a cold front lit up with very intense convection from Oklahoma through Missouri. Again, the model did a decent job highlighting the strongest areas of convection which correlated well with severe local storm reports. It should also be noted that the model does not seem to have significantly degraded output when the visible channel is missing (after sunset).

 

The next example is at a higher satellite viewing angle in western Nebraska, western South Dakota, and eastern Wyoming. The model again does a good job highlighting the strongest areas of storms. It should be noted that not every identified region has severe reports and not every severe report has a probability of intense convection ? 25%, but that there is generally good correspondence between reports and the model probabilities nonetheless.

 

This example is from the Southeast U.S. in more of a low-shear “microburst” environment instead of a high-shear “supercell” environment. You can see that instead of predicting high probabilities for all of the convective storms, the model exhibits the highest probabilities for the storm clusters that at least subjectively look the strongest.

 

This next example from the Central Plains demonstrates the ability to discern decaying convection, as the first storm moves into Missouri and then quickly diminishes in appearance and in probability. It also demonstrates the model’s ability to pick out multiple threat areas within a large cloud mass at night.

 

This is an example using mesoscale scans. Despite not being trained with 1-min data, the model predictions still look very fluid and reasonable. This could be an excellent way for scientists and forecasters to leverage 1-min observations in a quantitative manner.

 

Another example using GOES-East 1-min mesoscale scans. The model generally picks out the strongest portions of a MCS in Illinois and Indiana.

 

At a very high viewing angle, the model predicts probabilities of ?90% for a storm in Arizona. The storm did not generate severe reports, but was warned on by the NWS multiple times.

 

The model is deployed during an early autumn severe weather outbreak.

This example shows the model deployed on 1-min mesoscale scans over very intense thunderstorms in Argentina. It demonstrates that the model is generally applicable to anywhere in the world where advanced imager and GLM-like observations are present.

 

Here, a model was trained without GLM data and deployed for an example in the Alaska Panhandle, where GLM data is not available. This storm prompted a severe thunderstorm warning from the Juneau, AK NWS office. Note the change in the values of the probability contours. The maximum probability for this storm was 36% at 02:43 UTC. In a relative sense, the intense convection probability product could still be useful in unconventional regions, such as Alaska.