GOES-14 SRSO-R: severe thunderstorms in parts of the Midwest and the Southern Plains
The GOES-14 satellite remained in Super Rapid Scan Operations for GOES-R (SRSO-R) mode for part of the day on 11 May 2016; Infrared Window (10.7 µm) images (above) showed the nocturnal development of a severe thunderstorm ahead of an approaching occluded front (surface analyses) that dropped large amounts of hail in the northwestern section of Omaha, Nebraska (station identifier KOMA), stripping trees of foliage and clogging some city streets (even requiring the use of snow plows and shovels: photo 1 | photo 2). The storm began to exhibit an “enhanced-V” signature just prior to the time that it started producing large hail in Omaha. Note: the plotted location of the SPC storm reports on this animation (and all animations on this blog post) have been parallax-corrected, moving them slightly north-northeastward to match the location of cloud top features having a mean altitude of 10 km. The letters UNK after a W wind report denotes “unknown intensity”.During the late afternoon and early evening, GOES-14 Visible (0.63 µm) images (below; also available as a large 59 Mbyte animated GIF) revealed additional thunderstorms which produced hail and damaging winds across eastern Missouri and southern Illinois (SPC storm reports). These storms fired along an outflow boundary left in the wake of another mesoscale convective system (MCS) that moved through the region earlier in the day.
Side note: there was a planned outage of GOES-14 SRSO-R imagery from 1059-2119 UTC. During this time, the GOES-13 (GOES-East) satellite had been placed into Rapid Scan Operations (RSO) mode, providing images as frequently as every 5-7 minutes. Visible (0.63 µm) images (below) showed the mesoscale convective system that produced hail as large as 4.0 inches in diameter in the St. Louis, Missouri area. Finally, late in the day another MCS developed in North Texas, just west of the Dallas/Fort Worth area. GOES-14 Visible (0.63 µm) images with parallax-corrected SPC storm reports (below; also available as a large 54 Mbyte animated GIF) showed the large hail and damaging winds produced by this storm. One feature of interest was the “storm-top plume” that emanated from the largest cluster of overshooting tops, and was blown northeastward.