Super Typhoon Lekima in the West Pacific Ocean

August 8th, 2019 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.4 µm, right) images [click to play animation | MP4]

JMA 2.5-minute rapid scan Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images (above) showed the eye and eyewall region of Category 4 Super Typhoon Lekima on 07-08 August 2019. Features of interest included surface mesovortices within the eye, eyewall cloud-top gravity waves, and a quasi-stationary “cloud cliff” notch extending northwestward from the eye (infrared brightness temperature contours). This cloud cliff feature has been observed with other intense tropical cyclones (for example, Typhoon Neoguri in 2014).

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 as viewed using RealEarth are shown below.

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 [click to enlarge]

The trochoidal motion (or wobble) of the eye of Lekima became very pronounced as it crossed the Ryukyu Islands, as seen in an animation of 2.5-minute rapid scan Himawari-8  Infrared images (below). The center of the tropical cyclone moved between Miyakojima (ROMY) and Ishigakijima (ROIG), which reported wind gusts to 67 knots and 64 knots respectively.

Himawari-8 Infrared (10.4 µm) images [click to play animation| MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 Infrared images with contours and streamlines of deep-layer wind shear at 15 UTC from the CIMSS Tropical Cyclones site (below) indicated that Lekima was moving through an environment of very low shear, which was a factor aiding its intensification.

Himawari-8 "Clean" Infrared Window (10.4 µm) images, with contours and streamlines of deep-layer wind shear at 15 UTC [click to play animation]

Himawari-8 “Clean” Infrared Window (10.4 µm) images, with contours and streamlines of deep-layer wind shear at 15 UTC [click to play animation]

Leave a Reply