GOES-16 Cirrus Channel and Dust

March 23rd, 2017 |

GOES-16 Visible (0.64 µm) images, 2132-2232 UTC on 23 March [click to play animated gif]

GOES-16 Visible (0.64 µm) images, 2132-2232 UTC on 23 March [click to play animated gif]

GOES-16 data posted on this page are preliminary, non-operational data that are undergoing testing.

The visible animation from late afternoon over west Texas, above, shows a characteristic signature of a shroud of dust around El Paso, TX behind a dryline associated with a developing cyclone in the lee of the Rocky Mountains. This pall of dust was visible in many of the 16 channels on the Advanced Baseline Imager (ABI) that sits on GOES-16. The toggle below cycles through the Red visible (0.64 µm), the Blue visible (0.47 µm), the Cirrus channel (1.38 µm), the Snow/ice channel (1.61 µm) and the Upper-Level and Lower-Level water vapor channels (6.19 µm and 7.34 µm, respectively) (Click here for a faster image toggle). In  addition, a 2-panel comparison of GOES-16 Visible and Cirrus band imagery is available here.

GOES-16 Visible (0.64 µm and 0.47 µm), Cirrus (1.38 µm), Snow/Ice (1.61 µm), Upper level Water Vapor (6.19 µm) and Lower Level Water Vapor (7.34 µm) images, 2132 UTC on 23 March [click to enlarge]

GOES-16 Visible (0.64 µm and 0.47 µm), Cirrus (1.38 µm), Snow/Ice (1.61 µm), Upper level Water Vapor (6.19 µm) and Lower Level Water Vapor (7.34 µm) images, 2132 UTC on 23 March [click to enlarge]

Several aspects of the toggle above bear comment. Note that the blue channel (0.47 µm) has in general a ‘hazier’ appearance than the 0.64 µm red channel. Atmospheric scattering is more important at shorter wavelengths, and that is picked up by the satellite. The 1.38 µm ‘Cirrus’ Channel generally does not see the surface because of water vapor absorption at that wavelength. However, the atmosphere behind the dry line is sufficiently parched (total Precipitable Water in the El Paso sounding on 0000 UTC 24 March is less than 6 mm; sounding from this site) that complete attenuation by water vapor is not occurring; dust is highly reflective at 1.38 µm and a signal becomes apparent in the dry air from west Texas southwestward into central Mexico.

Thin dust is very difficult to detect in the 1.61 µm snow/ice channel because solar energy at that wavelength reflected from the surface moves unimpeded through thin dust; thus you can generally see the surface in dusty regions in the 1.61 µm channel. On this date the 1.61 µm channel nimbly discriminated between water clouds (over central Mexico) and ice clouds (over much of the rest of the domain, as shown in this toggle between 0.64 µm and 1.61 µm : only the clouds composed of water are reflective (white) in both channels.

The atmosphere was sufficiently dry on this date that the lower-level (7.34 µm) water vapor channel detected surface features (horizontal convective rolls) associated with the blowing dust. (click here for the 6.19 µm image; surface features are not so apparent). Weighting functions computed at those wavelengths show a significant contribution from the surface at 7.4 µm (the red line), and also at 7.0 µm, (the green line), so the mid-level water vapor imagery from GOES-16 likely also shows surface influences); the 6.5 µm weighting function (the blue line) does not extend to the surface (These GOES-13 Sounder Weighting Functions that are similar to those from the GOES-16 ABI are from this site) so it’s unlikely that the 6.19 µm imagery shows surface features.

The GOES-R Website has fact sheets on the 0.47 µm, 0.64 µm, 1.38 µm, 1.61 µm, 6.19 µm and 7.34 µm channels.

Added: The RAMSDIS GOES-16 Loop of the Day from 23 March showed the Dust RGB product.

GOES-16 Visible and Cirrus Channels

March 21st, 2017 |

GOES-16 Visible (0.64 µm) images, 1202-1732 UTC on 21 March [click to play animated gif]

GOES-16 Visible (0.64 µm) images, 1202-1732 UTC on 21 March [click to play animated gif]

GOES-16 data posted on this page are preliminary, non-operational data that are undergoing testing.

GOES-16 Visible imagery captured the erosion of near-surface clouds over Ohio on 21 March 2017. A benefit of the routine 5-minute imagery is that it allows better estimates of exactly when the low clouds will clear out. There is ample suggestion in the animation above of the presence of cirrus clouds. The GOES-16 ABI has a channel at 1.38 µm that is specifically designed to detect cirrus clouds because that is a region in the electromagnetic spectrum where strong water vapor absorption occurs. The animation of ‘cirrus channel’ imagery, below, confirms the presence of widespread cirrus clouds.

GOES-16 Cirrus Channel (1.38 µm) images, 1202-1732 UTC on 21 March [click to play animated gif]

GOES-16 Cirrus Channel (1.38 µm) images, 1202-1732 UTC on 21 March [click to play animated gif]

The MODIS instrument also has a similar near-infrared Cirrus spectral band — and a comparison of Terra MODIS Visible (0.65 µm) and Cirrus (1.375 µm) images at 1601 UTC is shown below.

Terra MODIS Visible (0.65 µm) and Cirrus (1.375 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Cirrus (1.375 µm) images [click to enlarge]

GOES-16 Mesoscale Sector visible images: severe thunderstorms in Illinois/Indiana, and Tennessee/Georgia/South Carolina

March 20th, 2017 |

GOES-16 Visible (0.64 µm) images, with SPC storm reports of hail size [click to play MP4 animation]

GOES-16 Visible (0.64 µm) images, with SPC storm reports of hail size [click to play MP4 animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

1-minute interval 0.5-km resolution GOES-16 Visible (0.64 µm) images (above; also available as a 130 Mbyte animated GIF) showed a cluster of thunderstorms that moved southeastward across Illinois and Indiana, producing a swath of hail as large as 2.75 inches in diameter (SPC storm reports) on 20 March 2017. The shadowing and textured signature of overshooting tops could be seen in the vicinity of many of the hail reports (hail sizes, red, are plotted in 1/100th of an inch; 275 = 2.75 inches).

On 21 March, a larger-scale outbreak of wind and hail-producing thunderstorms developed which primarily impacted parts of Tennessee, Georgia and South Carolina. Trees falling on homes were responsible for injuries and a fatality in Georgia, and hail as large as 3.0 inches occurred in South Carolina (SPC storm reports). As discussed on the Satellite Liaison Blog, the co-location of both Mesoscale Sectors provided images at 30-second intervals — GOES-16 Visible (0.64 µm) images (below; also available as a 168 Mbyte animated GIF) again displayed very detailed cloud-top structure which included overshooting tops and gravity waves.

GOES-16 Visible (0.64 µm) images, with SPC storm reports of hail (red) and wind damage (cyan) [click to play MP4 animation]

GOES-16 Visible (0.64 µm) images, with SPC storm reports of hail (red) and wind damage (cyan) [click to play MP4 animation]

GOES-16 Mesoscale Sectors: improved monitoring of fire activity

March 19th, 2017 |

GOES-16 Shortwave Infrared (3.9 µm, left) and GOES-13 Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm, left) and GOES-13 Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

The ABI instrument on GOES-16 is able to scan 2 Mesoscale Sectors, each of which provides images at 1-minute intervals. For what was likely a prescribed burn in the Francis Marion National Forest (near the coast of South Carolina) on 19 March 2017, a comparison of 1 minute Mesoscale Sector GOES-16 and 15-30 minute Routine Scan GOES-13 Shortwave Infrared (3.9 µm) images (above; also available as a 50 Mbyte animated GIF) demonstrated the clear advantage of 1-minute imagery in terms of monitoring the short-term intensity fluctuations that are often exhibited by fire activity. In this case,  the intensity of the fire began to increase during 15:15-15:45 UTC — a time period when there was a 30-minute gap in routine scan imagery from GOES-13. The GOES-16 shortwave infrared brightness temperature then became very hot (red enhancement) beginning at 15:46:58 UTC, which again was not captured by GOES-13 — even on the 16:00 UTC and later images (however, this might be due to the more coarse 4-km spatial resolution of GOES-13, compared to the 2-km resolution of the shortwave infrared band on GOES-16). Similar short-term intensity fluctuations of a smaller fire (burning just to the southwest) were not adequately captured by GOES-13.

The corresponding GOES-16 vs GOES-13 Visible image comparison (below; also available as a 72 Mbyte animated GIF) also showed the advantage of 1-minute scans, along with the improved 0.5-km spatial resolution of the 0.64 µm spectral band on GOES-16 (which allowed brief pulses of pyrocumulus clouds to be seen developing over the fire source region).

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images [click to play MP4 animation]

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images [click to play MP4 animation]

 The rapid south-southeastward spread of the smoke plume could also be seen on true-color Red/Green/Blue (RGB) images from Terra/Aqua MODIS and Suomi NPP VIIRS, as viewed using RealEarth (below).

Terra MODIS, Aqua MODIS and Suomi NPP VIIRS true-color images [click to enlarge]

Terra MODIS, Aqua MODIS and Suomi NPP VIIRS true-color images [click to enlarge]