Lunar Eclipse Effects on VIIRS Day/Night Band Imagery

April 15th, 2014
Suomi NPP VIIRS Day Night Band images, times as indicated

Suomi NPP VIIRS Day Night Band images, times as indicated

A Total Lunar Eclipse occurred over North America early in the morning of 15 April 2014. The resultant lack of lunar illumination had a profound impact on the “visible image at night” quality of the VIIRS 0.7 µm Day/Night Band imagery during the Suomi NPP satellite overpass at around 0800 UTC over the midsection of the United States. The animation above shows excellent illumination from the Full Moon at 0619 UTC (2:19 AM Eastern time) along the East Coast, and also at 0940 UTC (2:40 AM Pacific time) along the West Coast; however, the image at 0800 UTC (3:00 AM Central time), in the middle of eclipse totality, resembles Day/Night Band images seen during a New Moon.

A comparison of three similar Day/Night Band images from the day before is here.

Even though the 08:00 UTC VIIRS Day/Night Band image exhibited a comparatively dull and “washed-out” appearance (due to very little illumination from eclipsed moonlight), there were still features of interest that could be seen. For example, a closer look over the southeastern US using the 0.7 µm Day/Night Band and 11.45 µm IR channel images (below) showed the effect of lightning activity associated with a pre-cold-frontal squall line over the Florida panhandle and the adjacent offshore waters of the Gulf of Mexico: a pair of long, narrow bright streaks (caused by cloud illumination from intense lightning activity as the sensor was rapidly scanning from northwest to southeast), abruptly followed by dark black streaks that eventually faded away. These dark black streaks represent post-saturation “recovery periods” after the sensor scanned the extremely bright cloud features. Incidentally, the coldest 11.45 µm IR brightness temperature over the Florida panhandle was -80º C (very near the area of dense cloud-to-ground lightning strikes).

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel images, with surface frontal analysis and 1-hour cloud-to-ground lightning strikes

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel images, with surface frontal analysis and 1-hour cloud-to-ground lightning strikes

Fatal wildfire in Valparaíso, Chile

April 13th, 2014
GOES-13 3.9 µm shortwave IR channel images

GOES-13 3.9 µm shortwave IR channel images

Strong winds helped a wildfire to spread very quickly through a portion of the city of Valparaíso, Chile — this fire forced large-scale evacuations, destroyed around 2000 homes, and was responsible for 12 fatalities. McIDAS images of 4-km resolution GOES-13 3.9 µm shortwave IR channel data (above) showed the fire “hot spot” (black to red color enhancement), which began late in the day on 12 April 2014, and burned through the night and into the day on 13 April. The hottest 3.9 µm IR brightness temperatures were 339.6 K (66.45º C) at 20:45 UTC and 340.8 K (67.65º C) at 23:45 UTC on 12 April.

Since the GOES-13 satellite only performs one full-disk scan (hence imaging the Southern Hemisphere) every 3 hours, the temporal behavior of this fire cannot be well ascertained. The ABI instrument on the future GOES-R satellite will perform a full-disk scan every 5 minutes.

Comparisons of 1-km resolution GOES-13 visible channel images and 4-km resolution GOES-13 3.9 µm shortwave IR images (below) showed that the narrow fire smoke plume spread rapidly to the northwest.

GOES-13 0.63 µm visible channel (left) and 3.9 µm shortwave channel images (right)

GOES-13 0.63 µm visible channel (left) and 3.9 µm shortwave channel images (right)

——————————————————————————————————–

Suomi NPP VIIRS 3.74 µm shortwave IR image

Suomi NPP VIIRS 3.74 µm shortwave IR image

A 375-meter resolution Suomi NPP VIIRS 3.74 µm (Band I4) shortwave IR image at 05:41 UTC (above) showed greater detail of the wildfire hot spot, which exhibited a maximum IR brightness temperature of 367.0 K (93.85º C). 367 K is actually the saturation temperature for the VIIRS Band I4 detectors, indicating that this was a very hot fire. Valparaiso is located about 112 km or 70 miles west-northwest of Santiago, Chile (station identifier SCEL).

By comparison, the 4-km resolution GOES-13 3.9 µm shortwave IR image close to that time (below) indicated that the maximum IR brightness temperature of the wildfire hot spot was only 316.5 K (43.35º C).

Suomi NPP VIIRS 3.74 µm shortwave IR channel image (left) and GOES-13 3.9 µm shortwave IR channel image (right)

Suomi NPP VIIRS 3.74 µm shortwave IR channel image (left) and GOES-13 3.9 µm shortwave IR channel image (right)

McIDAS-V images of VIIRS 3.9 µm (Band M15) shortwave IR and 0.7 µm Day/Night Band (DNB) data (below; courtesy of William Straka, CIMSS/SSEC) revealed that the large fire hot spot (yellow to red color enhancement on the shortwave IR image) was adjacent to and encroaching upon the bright night-time city lights of the Valparaiso area (as seen on the Day/Night Band image). In addition, ample illumination from a nearly-full Moon allowed the smoke plume to be seen on the DNB image, as it drifted northwestward over the adjacent waters of the Pacific Ocean.

Suomi NPP VIIRS 3.9 µm shortwave IR and 0.7 µm Day/Night Band images

Suomi NPP VIIRS 3.9 µm shortwave IR and 0.7 µm Day/Night Band images

Fires had been burning in parts of Chile since January 2014. Additional information on this Valparaíso fire can be found on the Wildfire Today site.

Grassland fires in Kansas

April 12th, 2014
GOES-13 3.9 µm shortwave IR images (click to play animation)

GOES-13 3.9 µm shortwave IR images (click to play animation)

Numerous grassland fires began to burn across parts of eastern Kansas (and also extreme northeastern Oklahoma) during the afternoon hours on 11 April 2014. AWIPS images of 4-km resolution GOES-13 3.9 µm shortwave IR channel data (above; click image to play animation) showed that many of these fires continued to burn into the overnight hours — the largest and most intense fire “hot spot” (black to yellow to red color enhancment) was seen northwest of Emporia, Kansas (station identifier KEMP) at 06:40 UTC or 1:40 AM local time, which exhibited an IR brightness temperature of 40º C. Smoke from these fires reduced the surface visibility as low as 2 miles at Manhattan (KMHK) and 4 miles at Topeka (KTOP). However, as high cirrus clouds began to move over the region later in the night and toward dawn, identification of the fire hot spots on GOES imagery became more difficult.

A comparison of 1-km resolution Suomi NPP VIIRS 3.74 µm and 4-km resolution GOES-13 3.9 µm shortwave IR images just after 07 UTC or 2 AM local time (below) demonstrated the advantage of higher spatial resolution for detecting not only the locations of many of the smaller fire hot spots, but also for providing a more accurate value of the intensity of the larger, hotter fires; in this case, the highest IR brightness temperature of the larger fire northwest of Emporia on the VIIRS image was 50.5º C (red color enhancement), compared to only 22.5º C (darker black color enhancement) on the GOES-13 image.

Suomi NPP VIIRS 3.74 µm and GOES-13 3.9 µm shortwave IR images

Suomi NPP VIIRS 3.74 µm and GOES-13 3.9 µm shortwave IR images

Since these fires were burning at night, they also exhibited bright signatures on the 0.7 µm Suomi NPP VIIRS Day/Night Band (DNB) image; lights from cities and towns also appeared as bright spots on the DNB image, but a comparison with the corresponding VIIRS 3.74 µm shortwave IR image helped to identify which could be attributed to actively burning fires (below).

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR images

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR images

As mentioned above, high cirrus clouds moving over the region later in the night made fire hot spot identification more difficult on the 4-km resolution GOES-13 shortwave IR imagery. However, a 1-km resolution POES AVHRR 3.74 µm shortwave IR image at 11:50 UTC or 6:50 AM local time (below) was able to detect a number of fire hot spots (darker black pixels) through the cirrus cloud features.

POES AVHRR 3.74 µm shortwave IR image

POES AVHRR 3.74 µm shortwave IR image

Severe Tropical Cyclone Ita

April 10th, 2014
MTSAT-2 10.8 µm IR channel images (click to play animation)

MTSAT-2 10.8 µm IR channel images (click to play animation)

McIDAS images of MTSAT-2 10.8 µm IR channel data (above; click image to play animation) showed the development of a distinct eye associated with Intense Cyclone Ita (23P) as it moved southwestward across the Coral Sea toward the coast of Queensland, Australia on 10-11 April 2014. Cyclone Ita exhibited a period of rapid intensification (Advanced Dvorak Technique plot) early on 10 April, reaching Category 4 intensity (JTWC advisory) on the Saffir-Simpson scale (or a Category 5 on the Australian intensity scale: BOM advisory). Ita had been moving through an environment with weak deep layer wind shear and over warm sea surface temperatures, which aided in its intensification.

A timely overpass of a Metop polar-orbiting satellite provided ASCAT surface scatterometer winds at 11:26 UTC, as seen on an image from the CIMSS Tropical Cyclones site (below).

MTSAT-1 10.8 IR image with Metop ASCAT surface scatterometer winds

MTSAT-1 10.8 IR image with Metop ASCAT surface scatterometer winds

The structure of the eye of Ita was nicely displayed on a TRMM satellite TMI 85 GHz microwave image at 14:32 UTC (below).

TRMM TMI 85 GHz microwave image

TRMM TMI 85 GHz microwave image

A McIDAS-V image comparison of Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band data at 14:58 UTC (below; courtesy of William Straka, SSEC/CIMSS) showed great detail of the eye and surrounding eyewall region of Ita.

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

The first available early-morning MTSAT-2 0.675 µm visible channel image at 20:32 UTC (below) revealed a convective tower within the northeastern portion of the eyewall region, with a distinct overshooting top (10-11 April animation of MTSAT-2 visible images).

MTSAT-2 0.675 µm visible channel image

MTSAT-2 0.675 µm visible channel image

The MTSAT InfraRed/Water Vapor difference product (below; click image to play animation) indicated that overshooting tops were likely around a large area surrounding the core of Ita.

MTSAT IR/WV Difference product (click to play animation)

MTSAT IR/WV Difference product (click to play animation)

===== 11 April Update =====

A TRMM satellite TMI 85 GHz microwave image at 05:23 UTC showed that Ita had a double-eyewall structure as it was close to making landfall, indicating that the cyclone was undergoing an eyewall replacement cycle — this suggests that Ita was in a weakening phase as it made landfall.

TRMM TMI 85 GHz microwave image

TRMM TMI 85 GHz microwave image