Tropical Storm Niko (07P) in the South Pacific Ocean

January 20th, 2015
MIMIC Total Precipitable Water product, with Tropical Surface Analyses (click to play animation)

MIMIC Total Precipitable Water product, with Tropical Surface Analyses (click to play animation)

AWIPS images of the MIMIC Total Precipitable Water product (above; click image to play animation) showed a broad moist plume in the equatorial South Pacific Ocean, within which Tropical Storm Niko began to develop during the 19 January – 20 January 2015 period. By the end of the animation, Gale Force winds were being analyzed within the eastern semicircle of the developing cyclone. Metop ASCAT surface scatterometer winds at 08:01 UTC (below) showed winds as strong as 42 knots (though the direction of the stronger yellow wind barbs was suspect, likely due to rain contamination).

MIMIC TPW product, with Metop ASCAT surface scatterometer winds

MIMIC TPW product, with Metop ASCAT surface scatterometer winds

After daybreak on 20 January, McIDAS images of GOES-15 (GOES-West) 0.63 µm visible channel data (below; click image to play animation) showed the development of spiral banding wrapping into the central low-level circulation center as the system reached tropical storm intensity by 18 UTC.  In addition, a few strong convective pulses with distinct overshooting tops could be seen near the core of Niko.

GOES-15 0.63 µm visible channel images (click to play animation)

GOES-15 0.63 µm visible channel images (click to play animation)

An animation of GOES-15 10.7 µm IR channel images from the CIMSS Tropical Cyclones site (below) included an overlay of contours of the deep layer (200 – 850 hPa) wind shear at 18 UTC — Tropical Storm Niko developed in a region characterized by low wind shear, which enabled the storm to rapidly intensify.

GOES-15 10.7 µm IR channel images, with contours of deep layer wind shear

GOES-15 10.7 µm IR channel images, with contours of deep layer wind shear

Tropical Cyclone Bansi in the Indian Ocean

January 13th, 2015
Advanced Dvorak Technique (ADT) intensity estimate

Advanced Dvorak Technique (ADT) intensity estimate

A plot of the Advanced Dvorak Technique intensity estimate for Tropical Cyclone Bansi (above) showed that the storm experienced a period of rapid intensification late in the day on 12 January 2015, reaching Category 4 intensity by 00 UTC on 13 January.

EUMESAT Metosat-7 11.5 µm IR channel images (below; click to play animation; also available as an MP4 movie file) revealed the formation of a well-defined eye, which also exhibited a notable amount of trochoidal motion or “wobble” as it moved across the southwest Indian Ocean (north of Reunion and Mascarene Island).

Meteosat-7 11.5 µm IR channel images (click to play animation)

Meteosat-7 11.5 µm IR channel images (click to play animation)

A more detailed view of Tropical Cyclone Bansi was provided by McIDAS-V images of Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band data (below; credit: William Straka, SSEC) — deep convection with overshooting tops could be seen in the southern quadrant eyewall region, with gravity waves propagating radially outward across the northeastern and eastern portion of the cirrus canopy.

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

A DMSP SSMIS 85 GHz microwave image from the CIMSS Tropical Cyclones site (below) showed that a prominent “moat” of warm brightness temperatures (darker blue color enhancement) existed around the center of Bansi at 14:24 UTC on 13 January. The presence of such a moat usually signifies that the secondary (outer) eyewall formation process has completed, and an eyewall replacement cycle is underway (also signalling that the period of rapid intensification has ended). The moat feature is sustained by subsidence from the eyewall secondary circulations.

DMSP SSMIS 85 GHz microwave image

DMSP SSMIS 85 GHz microwave image

Note that there was no well-defined eye evident on the conventional Meteosat-7 IR image during this eyewall replacement cycle (below).

Meteosat-7 11.5 µm IR channel and DMSP SSMIS 85 GHz microwave images

Meteosat-7 11.5 µm IR channel and DMSP SSMIS 85 GHz microwave images

Super Typhoon Hagupit

December 4th, 2014
Advanced Dvorak Technique (ADT) intensity estimation plot

Advanced Dvorak Technique (ADT) intensity estimation plot

As seen on a plot of the Advanced Dvorak Technique (ADT) intensity estimation (above), Typhoon Hagupit underwent a period of rapid intensification in the West Pacific Ocean late in the day on 03 December 2014, reaching Super Typhoon (Category 5) intensity on 04 December. During this period of rapid intensification, COMS-1 10.8 µm IR channel images (below; click to play animation; also available as an MP4 movie file) showed the development of a well-defined eye, with very cold cloud-top IR brightness temperatures (in the -80 to -90º C range, shades of violet) in the surrounding eyewall region.

COMS-1 10.8 µm IR channel images (click to play animation)

COMS-1 10.8 µm IR channel images (click to play animation)

A nighttime comparison of Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel images at 15:50 UTC on 03 December (below; images courtesy of William Straka, SSEC) showed great detail in the cloud top IR brightness temperature patterns, as well as demonstrated the “visible image at night” capability of the Day/Night Band (which benefited from an abundance of reflected moonlight from a nearly-full Moon).

Suomi NPP VIIRS 0.64 µm and 11.45 µm IR image comparison

Suomi NPP VIIRS 0.64 µm and 11.45 µm IR image comparison

A longer-term sequence (beginning on 30 November) of storm-centered COMS-1 IR images is shown below (click image to play animation).

COMS-1 10.8 µm storm-centered IR images (click to play animation)

COMS-1 10.8 µm storm-centered IR images (click to play animation)

COMS-1 0.675 µm visible channel images from the CIMSS Tropical Cyclones site (below; click image to play animation) revealed the presence of mesovortices within the eye of Hagupit, with intricatecloud-top banding structures seen surrounding the eye.

COMS-1 0.675 µm visible channel images (click to play animation)

COMS-1 0.675 µm visible channel images (click to play animation)

A DMSP SSMIS 85 GHz microwave image at 22:43 UTC on 04 December (below) also showed the well-defined eyewall structure of the storm.

DMSP SSMIS 85 GHz microwave image

DMSP SSMIS 85 GHz microwave image

For additional images and information on Super Typhoon Hagupit, see the VISIT Meteorological Interpretation blog.

===== 06 December Update =====

A comparison of MTSAT 10.8 µm IR and TRMM TMI 85 GHz microwave images just after 16:30 UTC on 06 December (below) showed the center of Hagupit making landfall on the island of Samar in the Philippines as a Category 3 typhoon. The slow-moving tropical cyclone dropped as much as 300-400 mm (12-16 inches) of rainfall.

MTSAT 10.8 µm IR and TRMM TMI 85 GHz microwave images

MTSAT 10.8 µm IR and TRMM TMI 85 GHz microwave images

Nuri transforms into a strong extratropical storm

November 9th, 2014
MTSAT-2 6.75 µm IR water vapor channel images (click to play animation)

MTSAT-2 6.75 µm IR water vapor channel images (click to play animation)

Super Typhoon Nuri has completed its transition to one of the strongest extratropical cyclones ever on record in the Bering Sea (Link; Shemya Island had a gust to 96 miles per hour!). The animation above (click here for an mp4, or view it on YouTube) covers the entire lifecycle, from birth out of the ITCZ over the western Pacific to occlusion 7500 km north in the Bering Sea. (A faster animation is available as a animated gif or mp4).

Total Precipitable Water, 0000 6 November 2014 through 0600 9 November 2014 (click to enlarge)

Total Precipitable Water, 0000 6 November 2014 through 0600 9 November 2014 (click to enlarge)

Animations of Total Precipitable Water (from MIMIC) from 6-9 November, above, show that deep tropical moisture associated with Nuri did not make it up into the Bering Sea, but instead was shunted off to the east. Earlier, moisture from Nuri was entrained into the development of a storm in the Bering Sea on 4-5 November. A streamer of high-level moisture in the outflow from Nuri moves northeastward and eastward. That storm subsequently slipped southeastward and made landfall over the Pacific Northwest on 8 November.

Suomi NPP Day Night Band Visible Imagery (0.70 µm) over the Bering Sea, 7-10 November 2014 (click to enlarge)

Suomi NPP Day Night Band Visibe Imagery (0.70 µm) over the Bering Sea, 7-10 November 2014 (click to enlarge)

Suomi NPP overflew the developing storm in the Bering Sea about every twelve hours, and the imagery above, from the GINA Direct Broadcast Antenna at the University of Alaska-Fairbanks, shows the rapid development of a tight swirl of clouds by early on 8 November. Subsequently, the weakening storm drifted northward through the Bering Sea.

GOES-15 also viewed the strong development, both in the window channel (YouTube video) and in the water vapor channel (YouTube video (Color Enhanced)). The visible animation, below, shows a strong cyclone by 0300 UTC on 8 November; at the subsequent sunrise, 2000 UTC, the system had occluded.

GOES-15 0.62 µm IR Visible Imagery on 7, 8 and 9 November 2014 (click to play animation)

GOES-15 0.62 µm IR Visible Imagery on 7, 8 and 9 November 2014 (click to play animation)