Super Typhoon Jelawat

March 30th, 2018 |

Himawari-8 “Red” Visible (0.64 µm) Imagery, hourly from 2200 UTC 29 March through 0800 UTC 30 March (Click to animate)

Super Typhoon Jelawat has developed in the central Pacific Ocean, to the west of Guam and the Marianas Islands. The hourly imagery, above, from Himawari-8, from 2200 UTC on 29 March through 0800 UTC on 30 March show a rapid eye development. Satellite presentation seems best at around 0500 UTC, with a well-defined eye. Subsequently, high clouds covered the eye as it became less symmetric.

Himarwari-8 AHI Band 13 (“Clean Window”, 10.41 µm) Infrared Imagery, 2300 UTC on 29 March 2018 through 0140 UTC on 30 March 2018 (Click to enlarge)

Infrared Imagery (10.41 µm) imagery, above, shows a well-defined eye shortly after 0000 UTC. Following a data outage, imagery from 1400 UTC to 1600 UTC, below, shows a central region of cold convective clouds, but no obvious eye.

Himarwari-8 AHI Band 13 (“Clean Window”, 10.41 µm) Infrared Imagery, 1420 UTC on 30 March 2018 through 1600 UTC on 30 March 2018 (Click to enlarge)

Water Vapor Infrared Imagery from Himawari, below, shows that outflow from Jelawat is well-established to the north; outflow appears to be entrained into the mid-latitude westerlies. MIMIC Total Precipitable Water for the 24 hours ending 1600 UTC on 30 March (shown underneath the water vapor infrared imagery below) also shows the entrainment of tropical moisture around Jelawat into mid-latitudes.  The Total Precipitable Water shows a band of rich moisture extending to the east-southeast of Jelawat, portending a wet period for the Marianas Islands.

Himawari-8 AHI Water Vapor Imagery, Bands 8 (6.24 µm) and 10 (7.35 µm) at 1600 UTC on 30 March 2018 (Click to enlarge)

Morphed Microwave Observations of Total Precipitable Water, 1700 UTC on 29 March 2018 to 1600 UTC on 30 March 2018 (Click to enlarge)

Morphed Storm-centered Microwave Imagery for the 24 hours ending at 0900 UTC on 30 March, 2018 (from this site), show the rapid intensification after 0000 UTC on 30 March.  (Update:  a similar animation that ends at 1900 UTC on 30 March 2018 demonstrates a rapid collapse of the eyewall convection!)

Morphed Microwave Imagery for the 24 hours ending at ~0900 UTC on 30 March 2018 (Click to enlarge)

Full-resolution Visible Imagery from AHI (Band 3, 0.64) is shown below. (Faster and slower animations are available). A rapid organization and clearing of the eye is apparent around 0400 UTC with an equally-rapid apparent subsequent obscuration.

Full-Resolution Himawari-8 “Red” Visible (0.64 µm) Imagery, hourly from 0000 UTC 30 March through 0850 UTC 30 March (Click to animate)

GCOM overflew the storm at around 1610 UTC on 30 March, and the toggle below shows the 36.5 and 89.0 Ghz imagery over the storm (the same enhancement is used in each image).  The 36.5 Ghz imagery suggests a very asymmetric storm.  Eyewall convection in the 89 Ghz imagery is not robust. (These data were downloaded at the Direct Broadcast antenna on Guam and are courtesy Kathy Strabala, SSEC/CIMSS)

GCOM AMSR-2 36.5 and 89.0 GHz imagery over Jelawat, 1604 UTC on 30 March 2018 (Click to enlarge)

NOAA-20 and Suomi NPP also both overflew Jelawat around 1600 UTC on 30 March. The toggles below show NOAA-20 and then Suomi NPP Day Night Band visible imagery. and Infrared 11.45 Imagery, at 1549 and 1639 UTC. (Imagery courtesy William Straka, SSEC/CIMSS)  In contrast to the Visible and Infrared imagery from Himawari earlier in the day (at top), an eye is not present.  (Note that NOAA-20 data are provisional, non-operational, and undergoing testing still.)

VIIRS Infrared Imagery (11.45 µm) from NOAA-20 (1549 UTC) and Suomi NPP (1639 UTC) on 30 March 2018 (Click to enlarge)

VIIRS Day Night Band Visible Imagery (0.70 µm) from NOAA-20 (1549 UTC) and Suomi NPP (1639 UTC) on 30 March 2018 (Click to enlarge)

Suomi NPP also overflew the storm on 29 March 2018, at 0421 UTC. This was before Jelawat’s rapid intensification. The toggle below again uses data from the Direct Broadcast antenna on Guam and shows VIIRS visible (0.64 µm) and infrared (11.45 µm) imagery, MIRS products (Total Precipitable Water and Rain Rate) derived from data from the ATMS microwave sounder on Suomi NPP, and individual microwave channels from ATMS: 31, 88, 165 and 183 Ghz.

Suomi NPP VIIRS Visible (0.64 µm) and Infrared (11.45 µm) Imagery, MIRS Total Precipitable Water and Rain Rate, and individual Suomi NPP ATMS Channels: 31, 88, 165 and 183 GHz, all at 0421 UTC on 29 March 2018 (Click to enlarge)

Interests in the Marianas Islands should closely monitor the progress and evolution of this storm. This site and this site both have information on the system.

Cyclone Marcus west of Australia and south of Java

March 22nd, 2018 |

Himawari-8 AHI Band 13 (10.4 µm) infrared imagery, 0900-1540 UTC on 22 March 2018 (Click to animate)

NOAA-20 Imagery shown in this post is Non-Operational and preliminary and undergoing testing.

Himawari-8 captured the slow southward progress of Cyclone Marcus along 105 E Longitude between 0900 and 1540 UTC, as shown above.  During those six hours, the storm presentation suggested weakening, with a reduction in the central dense overcast and a warming of the eye.

Earlier, on 21 March at around 1800 UTC, the storm was at Category 5 Intensity on the Saffir-Simpson scale, and showed excellent presentation in the Day Night Band imagery, despite the lack of lunar illumination, and in the infrared (Click here for a toggle between the 0.70 µm Day Night Band Visible imagery and the 11.45 µm infrared imagery from Suomi NPP).  Significant Mesospheric Gravity Waves are apparent in all three images, the first (1710 UTC 21 March) and last (1850 UTC 21 March) from NOAA-20, and the middle (1800 UTC 21 March) from Suomi NPP.  (The waves are most prominent in the 1710 UTC Image from NOAA-20) The figure shows how Suomi NPP and NOAA-20 data can be used to create animations. A similar animation with Infrared Imagery (1710, 1800, and 1850 UTC) is below. (Suomi NPP and NOAA-20 Imagery courtesy Will Straka, CIMSS).

VIIRS Day Night Band Visible (0.70 µm) Imagery at 1710 UTC (from NOAA-20), 1800 UTC (from Suomi NPP), and from 1850 UTC (from NOAA-20) (Click to enlarge)

VIIRS Day Infrared (11.45 µm) Imagery at 1710 UTC (from NOAA-20), 1800 UTC (from Suomi NPP), and from 1850 UTC (from NOAA-20) (Click to enlarge)

Morphed microwave imagery for the 48 hours ending at about 1300 UTC on 22 March (from this site) show the evolution of the strong convection surrounding Marcus.  Eyewall convection has diminished on 22 March.

Morphed Microwave imagery centered on Cyclone Marcus for the 48 hours ending 1300 UTC on 22 March 2018 (Click to enlarge)

Added: Suomi NPP and NOAA-20 also observe the atmosphere at Microwave wavelengths using ATMS (The Advanced Technology Microwave Sounder). This toggle (created using McIDAS-V and data from the NOAA CLASS system) shows the 31 and 88 Ghz observations with the 11.45 VIIRS observations of the eye of Marcus at 1757 UTC on 21 March. The same brightness temperature enhancement is used for each image. Note that each observation shows a slightly different center location for the storm.

Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Temporary transition from Himawari-8 to Himawari-9

February 13th, 2018 |

Himawari-8 and Himawari-9

Himawari-8 and Himawari-9 “Clean” Infrared Window (10.4 µm) images [click to play Animated GIF | MP4 also available]

Himawari-9 temporarily took over for Himawari-8 beginning at 0250 UTC on 13 February 2018, as Himawari-8 underwent a 2-day scheduled maintenance. “Clean” Infrared Window (10.3 µm) images of Category 4 Cyclone Gita in the South Pacific Ocean during the satellite transition is shown above.

Himawari-9 was launched on 02 November 2016.