GOES-14 SRSO-R Imagery over North Carolina

May 21st, 2015



GOES-14 0.62 µm visible imagery, above, (here as an mp4, and here as a very large (220+ megabytes) animated gif) shows the development of convection over eastern North Carolina in a region of slight risk according to SPC (below).

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

==================================================================================

Mesoscale Discussion #713 from SPC, below, referenced the Super-Rapid scan imagery:

MESOSCALE DISCUSSION 0713
NWS STORM PREDICTION CENTER NORMAN OK
1111 AM CDT THU MAY 21 2015

AREAS AFFECTED…E-CNTRL AND ERN NC / SC GRAND STRAND

CONCERNING…SEVERE POTENTIAL…WATCH POSSIBLE

VALID 211611Z – 211745Z

PROBABILITY OF WATCH ISSUANCE…60 PERCENT

SUMMARY…SCATTERED STORMS ARE FORECAST TO DEVELOP OVER THE NEXT FEW
HOURS. AN ISOLATED SEVERE THREAT WILL LIKELY DEVELOP AND A WATCH
WILL STRONGLY BE CONSIDERED.

DISCUSSION…SUBJECTIVE SURFACE MESOANALYSIS PLACES A LOW 30 MI W
SOP WITH A WEST-EAST ORIENTED WARM FRONT AND A TRAILING COLD FRONT
ACROSS THE SC PIEDMONT. A PREFRONTAL CONFLUENCE/SURFACE TROUGH
EXTENDS FROM THE LOW SEWD THROUGH THE GRAND STRAND VICINITY.
OBSERVATIONS TO THE E OF THE SURFACE TROUGH AND LOCATED WITHIN THE
WARM SECTOR SHOW TEMPS WARMING TO NEAR 80 DEG F WITH BOUNDARY LAYER
DEWPOINTS IN THE MID-UPPER 60S INLAND AND AROUND 70 NEAR THE COAST.
SUPER RAPIDSCAN VISIBLE IMAGERY SHOWS A BUILDING TCU FIELD
IMMEDIATELY E OF THE LOW AND ALONG THE PREFRONTAL TROUGH/CONFLUENCE
.

WATER VAPOR IMAGERY LATE THIS MORNING IMPLIES A WEAK LEAD
DISTURBANCE MOVING ACROSS W-CNTRL NC AHEAD OF THE MID MS VALLEY
SHORTWAVE TROUGH FORECAST TO APPROACH THE CNTRL APPALACHIANS LATER
TODAY. IT SEEMS THE WEAK UPPER FORCING FOR ASCENT PROVIDED BY THE
LEAD IMPULSE COUPLED WITH ADDITIONAL DIABATIC HEATING WILL ERODE THE
CAP OVER THE NEXT 1-2 HOURS AND SCATTERED STORM COVERAGE IS PROBABLE
BY THE 18-19Z TIMEFRAME.

VEERING AND A GRADUAL STRENGTHENING OF WINDS WITH HEIGHT WILL
SUPPORT STORM ORGANIZATION ONCE A FEW VIGOROUS UPDRAFTS BECOME
ESTABLISHED. FORECAST SOUNDINGS DEPICT MODERATE BUOYANCY AS OF 16Z
ACROSS THE WARM SECTOR AND THIS SHOULD FAVOR STORM INTENSIFICATION
OVER THE NEXT SEVERAL HOURS ONCE INITIATION COMMENCES. ISOLD LARGE
HAIL AND DMGG WINDS WILL BE THE PRIMARY THREATS. DESPITE TEMPERED
LOW-LEVEL SHEAR…A TORNADO MAY ALSO BE POSSIBLE ESPECIALLY IF A
SUPERCELL CAN DEVELOP AND FAVORABLY TRACK ALONG THE WARM FRONT.

..SMITH/THOMPSON.. 05/21/2015

ATTN…WFO…AKQ…MHX…RAH…ILM…CAE…

LAT…LON 35267979 36097844 36297643 35847549 34977597 33737851
33897960 34497991 35267979

==================================================================================

The GOES-13 Sounder captured some of the destabilization that occurred ahead of the developing line of convection. Values less than -5 are widespread over southeastern North Carolina at 1600 UTC, after which time cirrus blowoff obscured the satellite view.

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

Suomi NPP’s orbits on 21 May allowed successive views of the developing convection, once at 1725 UTC and once near 1905 UTC. The convection developed near the edge of the swath in both images, however, so NUCAPS soundings did not view the environment closest to the storms. Infrared imagery, below, shows the quick evolution of convection.

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

VIIRS visible (0.64 µm) and near-infrared (1.61 µm) imagery, below, shows that the developing storms glaciated quickly; the 1.61 µm imagery over the convection shows the darker grey values characteristic of regions where ice crystals are strongly absorbing radiation. Water-based clouds — over Kentucky, for example — appear as bright white in both channels.

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Severe thunderstorm over West Texas, as viewed from 3 GOES satellites

May 19th, 2015

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 0.62 µm visible channel images [click to play animation]

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 0.62 µm visible channel images [click to play animation]

Thunderstorms began to develop across West Texas during the afternoon hours on 19 May 2015, along and ahead of an eastward-moving dryline. One of the storms went on to produce a few brief tornadoes, and hail as large as 3.0 inches in diameter (SPC storm reports). Different views of this storm were provided by GOES-15 (GOES-West), GOES-14 (in SRSO-R mode), and GOES-13 (GOES-East) 0.62 µm visible channel images (above; click image to play 190 MB animated GIF; also available as an MP4 movie file, or on YouTube). This comparison highlights the advantages of 1-minute interval Super Rapid Scan images (which will be available from GOES-R) compared to the standard 15-minute interval Routine Scan images provided by the current generation of GOES.

One interesting feature seen on the visible channel images above was the apparent merger of the large dominant dryline storm and a smaller northward-moving storm that had formed in Mexico (radar animation). In GOES-13 10.7 µm IR imagery with an overlay of SPC storm reports (below; click image to play animation), one report of 2.0-inch diameter hail was seen around or shortly after the time of the storm merger.

GOES-13 10.7 µm IR channel images (click to play animation)

GOES-13 10.7 µm IR channel images (click to play animation)

With higher spatial resolution IR imagery from MODIS (1-km), VIIRS (375-meter), and AVHRR (1-km), much colder cloud-top IR brightness temperatures were seen (below) compared to the corresponding 4-km resolution GOES IR imagery at those times — especially during the early formative stages of the thunderstorms captured with MODIS and VIIRS. The coldest cloud-top IR brightness temperature on the 2128 UTC AVHHRR image was -80º C, compared to -67º C on the 2130 UTC GOES image.

Terra and Aqua MODIS 11.0 µm, Suomi NPP VIIRS 11.45 µm, and POES AVHRR 12.0 µm IR channel images

Terra and Aqua MODIS 11.0 µm, Suomi NPP VIIRS 11.45 µm, and POES AVHRR 12.0 µm IR channel images

A more detailed discussion of this event can be found on the RAMMB GOES-R Proving Ground Blog.

Atmospheric Bore between the Grand Banks and New England

May 8th, 2015
GOES-13 0.63 µm Visible images (click to play animation)

GOES-13 0.63 µm Visible images (click to play animation)

Atmospheric Bores form in stable air and create horizontal cloud bands that propagate perpendicular to the along-band direction. The feature seen above in GOES-13 visible imagery formed in stable air south of a High Pressure system that pushed a backdoor cold front into New England (surface analyses). The southern edge of this bore was likely eroding as it became influenced by warmer less-stable air over with the Gulf Stream — the warm waters of the Gulf Stream were apparent in the toggle, below, of POES AVHRR 0.86 µm visible and 12.0 µm infrared imagery at 1055 UTC. The bore was apparently moving over the top of a shallow layer of sea fog that had formed in the colder waters north of the Gulf Stream.

POES AVHRR 0.86 µm Visible image and 12.0 µm Infrared image at 1055 UTC on 8 May 2015 (click to enlarge)

POES AVHRR 0.86 µm Visible image and 12.0 µm Infrared image at 1055 UTC on 8 May 2015 (click to enlarge)

Suomi NPP overflew the area at ~1800 UTC, affording a very high resolution view of the bore structures with the VIIRS 0.65 µm visible channel, below.

SNPP_DNB_1807UTC_08May2015

Suomi NPP VIIRS Visible (0.65 µm) imagery, 1807 UTC on 8 May 2015 (Click to enlarge)

The daytime propagation of the bore feature could also be followed on POES AVHRR 0.86 µm visible channel images, shown below.

POES AVHRR 0.86 µm visible images (click to enlarge)

POES AVHRR 0.86 µm visible images (click to enlarge)

Tropical Disturbance off the Southeast US Coast

May 7th, 2015
GOES-13 0.63 µm Visible images (click to play animation)

GOES-13 0.63 µm Visible images (click to play animation)

A disorganized subtropical system (Invest Area 90L) located over the southwest Atlantic to the east of Georgia and north of the Bahamas has the potential to become the first named system of the 2015 Atlantic Tropical Season (if named as a subtropical storm, this would be Ana). Visible imagery, above, shows a low-level swirl that is separated from any convection. However, during the 6 hours of the animation, the low-level swirl moves westward, moving more closely to active convection over the Gulf Stream. [Update, 2100 UTC 7 May: later images in the visible animation, above, showed strong convection developing over the surface circulation; another visible image animation with ship reports can be seen here]

Sea-surface temperatures (link) and wind shear (link) from the CIMSS Tropical Cyclones site show nominal conditions for strengthening.

MetOp-A passed over the southeast United States just after 1500 UTC on 7 May. The ASCAT scatterometer data (below) show a well-defined low-level circulation (with most winds just below tropical storm force) south and east of the deepest convection off the South Carolina/Georgia coasts.

ASCAT_07May2015

ASCAT winds from Metop-A and GOES-13 10.7 µm imagery, both near 1500 UTC on 7 May 2015; Surface observations from Fixed Buoys are also plotted (click to enlarge)

Suomi NPP overflew this system at 0700 UTC on 7 May, and imagery from the VIIRS Day/Night Band gave information that allowed a definitive estimate of the location of a low-level circulation. A comparison of the 0702 imagery, below, and the 1826 UTC imagery, following, shows changes in the organization and vertical structure of the developing system.

ASCAT_07May2015

Suomi NPP 11.45 µm infrared and 0.70 µm DayNight band visible imagery at 0702 UTC on 7 May 2015 (click to enlarge)

ASCAT_07May2015

As above, but at 1826 UTC on 7 May 2015 (click to enlarge)

Suomi NPP 1.61 µm near-infrared imagery can be used during the day to identify cirrus clouds: ice particles absorb (and do not reflect) radiation in these near-infrared wavelengths, but water droplets reflect. Thus, ice clouds appear dark. In the visible, both water and ice clouds are bright. The toggle below shows the 1.61 and the Visible imagery from Suomi-NPP.

ASCAT_07May2015

Suomi NPP 1.61 µm near-infrared and 0.65 µm visible imagery at 1826 UTC on 7 May 2015 (click to enlarge)

At 2006 UTC, the International Space Station’s RapidScat instrument provided surface scatterometer winds (below) that depicted the broad circulation of Invest AL90; the strongest winds were located farther away from the center of the feature.

GOES-13 0.63 µm visible image with an overlay of RapidScat surface scatterometer winds

GOES-13 0.63 µm visible image with an overlay of RapidScat surface scatterometer winds

08 May Update: Invest Area AL90 was upgraded to Subtropical Storm Ana by the National Hurricane Center around 02 UTC. A Terra MODIS 11.0 µm IR image at 0249 UTC is shown below, with overlays of the MSLP analysis, buoy reports, and RTMA surface winds.

Terra MODIS 11.0 µm IR channel image, with MSLP analysis, buoy reports, and RTMA surface wind analysis

Terra MODIS 11.0 µm IR channel image, with MSLP analysis, buoy reports, and RTMA surface wind analysis

A few hours later, a 0643 UTC comparison of Suomi NPP VIIRS 11.45 µm IR and 0.7 µm “visible image at night” Day/Night Band data is shown below.

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images

For more information on this system, see the National Hurricane Center website.