Atmospheric River brings precipitation to south-central Alaska

November 12th, 2018 |

Blended Total Precipitable Water product [click to play animation | MP4]

Blended Total Precipitable Water product, with Upper Air sites plotted in white [click to play animation | MP4]

The NESDIS Blended Total Precipitable Water (TPW) product (above) showed an atmospheric river that was transporting moisture northward from the tropics to south-central Alaska during 11 November – 12 November 2018. TPW values were in excess of 2.0 inches near the leading edge of the moisture plume early in the period.

The corresponding Percent of Normal Blended Total Precipitable Water product (below) indicated that these values of TPW were at or above 200 percent of normal (yellow).

Percent of Normal Blended Total Precipitable Water product, with Upper Air sites plotted in red [click to play animation | MP4]

Percent of Normal Blended Total Precipitable Water product, with Upper Air sites plotted in red [click to play animation | MP4]

Using the MIMIC Multi-layer TPW site, you can see how TPW is partitioned within various layers of the atmosphere (below). This TPW product uses microwave data from POES, Metop NOAA-20 and Suomi NPP satellites (description). It’s important to keep in mind that the location and continuity of a plume of TPW (such as an atmospheric river) might not always exactly agree what is seen on geostationary satellite Water Vapor imagery, since water vapor spectral bands usually sense radiation being emitted from levels above where the bulk of TPW is normally found (as discussed here).

MIMIC Multi-layer Total Precipitable Water product [click to play animation | MP4]

MIMIC Multi-layer Total Precipitable Water product on 12 November [click to play animation | MP4]

Anchorage, Alaska rawinsonde data (below) showed that TPW values reached a maximum of 0.73 inch at 00 UTC on 12 September.

Sequence of Anchorage, Alaska rawinsonde data from 00 UTC on 11 November to 00 UTC on 13 November [click to enlarge]

Anchorage, Alaska rawinsonde data from 00 UTC on 11 November to 00 UTC on 13 November [click to enlarge]

The arrival of this moisture produced heavy rainfall and mixed winter precipitation across the region — Portage Glacier (about 50 miles southeast of Anchorage) received 9.99 inches of rainfall in 48 hours, and Anchorage set a new daily precipitation record on 11 November with 0.89″ (which included 1.0 inch of new snow). A summary of temperature and precipitation reports can be seen here.

A comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 2157 UTC on 12 November (below) revealed widespread layered clouds across most of south-central Alaska.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 2157 UTC on 12 November [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 2157 UTC on 12 November [click to enlarge]

Woolsey Fire in southern California

November 9th, 2018 |

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) showed the thick smoke and hot thermal signature of the Woolsey Fire in southern California on 09 November 2018. On this day it exhibited extreme fire behavior, with the large thermal anomaly or fire “hot spot” (red enhancement) moving rapidly southwestward and reaching the coast (Wildfire Today). The fires were driven by hot, dry Santa Ana winds, which arrived at Camarillo KCMA around 19 UTC (11 AM local time) and reached the coast at Point Mugu Naval Air Station KNTD around 22 UTC (2 PM local time).

A longer animation of GOES-16 Shortwave Infrared imagery (below) begins at 2115 UTC (1:15 PM local time) on 08 November — when a Mesoscale Sector was first positioned over California — and ends 52.5 hours later at 0149 UTC on 11 November (5:49 PM local time on 10 November). The first Ventura County fire to show a pronounced thermal signature was the Hill Fire; the earliest appearance of Woolsey Fire pixels that were hot enough to be color-enhanced (yellow) was at 2254 UTC (30 minutes after the reported start time of 2224 UTC). The area of hottest (red) pixels then began to increase in coverage and spread toward the southwest after about 06 UTC on 09 November (10 PM local time on 08 November), when Santa Ana winds began to increase at higher elevations several miles inland. As was seen in the Visible / Shortwave Infrared animation above, the morning period from 15-19 UTC (7-11 AM local time) on 09 November was when the fire moved very quickly toward the California coast and the beaches of Malibu. After sunset on 09 November, the area and intensity of hot red/yellow pixels began to decrease, and after 10 UTC (2 AM local time) on 10 November only darker black fire pixels persisted. During the day on 10 November, color-enhanced hot fire pixels were again evident from 1726-2353 UTC (9:26 AM to 3:53 PM local time). Note that at 19 UTC the marine layer began to move inland, with the dewpoint jumping to 46ºF at KNTO and to 33ºF at KCMA an hour later — the fire responded to this influx of moist air by beginning to die down.

GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

A nighttime comparison of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0923 UTC (1:23 AM local time) on 10 November (below) showed a marked reduction in coverage and intensity of hot pixels compared to 15 hours earlier.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0923 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images at 0923 UTC [click to enlarge]

The smoke was very dense as it moved out over the adjacent offshore waters of the Pacific Ocean on 09 November, as seen in a sequence of MODIS and VIIRS Visible images (below).

MODIS and VIIRS Visible images [click to enlarge]

MODIS and VIIRS Visible images [click to enlarge]

VIIRS True Color Red-Green-Blue (RGB) images from Suomi NPP at 2104 UTC and NOAA-20 at 2154 UTC on 09 November (below) also depicted the optically-thick nature of the smoke.

Suomi NPP VIIRS True Color image at 2104 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB image at 2104 UTC [click to enlarge]

NOAA-20 VIIRS True Color image at 2154 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2154 UTC [click to enlarge]

The smoke was so thick that Suomi NPP VIIRS Aerosol Optical Depth values exceeded 1.0 (below) —  this is likely due to the VIIRS Cloud Mask product (a component of the AOD algorithm)  falsely flagging the thick center portion of the smoke as “cloud”.

Suomi NPP VIIRS True Color RGB and Aerosol Optical Depth [click to enlarge]

Suomi NPP VIIRS True Color RGB and Aerosol Optical Depth [click to enlarge]

===== 11 November Update =====

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

Santa Ana winds began to increase again on 11 November — 1-minute GOES-16 Visible and Shortwave Infrared images (above) showed the development of new smoke plumes and hot thermal signatures around the periphery of the ongoing Woolsey Fire. As of 1812 UTC (10:12 AM local time), the fire had burned 83,275 acres and was listed as 10% contained.

The new smoke plumes (as well as residual smoke from previous days of burning) could be seen on VIIRS True Color RGB imagery from Suomi NPP at 2029 UTC and NOAA-20 at 2114 UTC (below). The entire image swaths as captured and processed by the Direct Broadcast ground station at CIMSS/SSEC can be seen here and here.

Suomi NPP VIIRS True Color RGB image at 2029 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB image at 2029 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2114 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2114 UTC [click to enlarge]

Lake-enhanced snow along the south shore of Lake Superior

November 9th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

NWS Duluth requested a GOES-16 (GOES-East) Mesoscale Domain Sector to monitor the potential for lake-enhanced snowfall along the south shore of Lake Superior on 09 November 2018 — and 1-minute “Red” Visible (0.64 µm) images (above) showed the cyclonic flow around abroad area of low pressure over the Great Lakes (surface analyses), along with the formation of convective elements within the northeasterly flow over western Lake Superior.

A closer look at GOES-16 Visible imagery (below) showed that as the convection moved inland over north-central Wisconsin and far western Upper Michigan, moderate snow developed at Ashland WI and heavy snow was reported at Ironwood MI beginning around 2030 UTC. GOES-16 GLM Flash data did not indicate any lightning associated with the lake-enhanced convection. Hourly surface wind barbs are also plotted; 10-minute wind data for Buoys ROAM4 and DISW3 are available here and here — northerly wind gusts at Buoy ROAM4 reached 25.2 m/s (49 knots) at 2257 UTC and 21.1 m/s (41 knots) at Buoy DISW3 at 2048 and 2202 UTC.

GOES-16 "Red" Visible (0.64 µm) images, with hourly surface weather type plotted in yellow [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with hourly surface weather type plotted in yellow and wind barbs (knots) plotted in cyan [click to play MP4 animation]

A sequence of Suomi NPP and NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images (below) showed a more detailed view of the convection that developed over western Lake Superior (in response to instability from cold air moving over relatively warm water — the temperature difference between cold air aloft at 850 hPa and the lake surface was on the order of 15-20º C).  Snowfall rates were also locally enhanced by lifting when northerly/northwesterly surface winds off the lake interacted with the topography of the Gogebic Range in Wisconsin and Michigan (where elevations rise to 1800 feet).

Suomi NPP and NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with Topography [click to enlarge]

Suomi NPP and NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with Topography [click to enlarge]

A comparison of Snow Depth at 12 UTC on 09 and 10 November, plus 24-hour Total Snowfall ending at 12 UTC on 10 November from NOHRSC (below) showed accumulations of 14 inches at two sites in north-central Wisconsin; other snowfall amounts included 8.6 inches at Bayfield WI and 14.6 inches at Ironwood MI.

Snow Depth at 12 UTC on 09 and 10 November, plus 24-hour snow accumulation ending at 12 UTC on 10 November [click to enlarge]

Snow Depth at 12 UTC on 09 and 10 November, plus 24-hour Total Snowfall ending at 12 UTC on 10 November [click to enlarge]

Animations of radar reflectivity over the Upper Midwest and Wisconsin are available here and here (courtesy of Pete Pokrandt, UW-AOS).

Camp Fire in northern California

November 8th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top left), Shortwave Infrared (3.9 µm, top right), “Clean” Infrared Window (10.3 µm, bottom left) and Fire Temperature (bottom right) [click to play animation | MP4]

The Camp Fire started at 1433 UTC or 6:33 AM local time on 08 November 2018 in Northern California; the rapid spread of the fire prompted evacuations and forced road closures. GOES-16 (GOES-East) GOES-16 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm), “Clean” Infrared Window (10.3 µm) and Fire Temperature (above) showed the evolution of the fire at 5-minute intervals — especially noteworthy were the rapid vertical jump of the smoke column seen at 1547 UTC (which cast a long shadow), and Fire Temperature values that exceeded 2000 K (bright red pixels) at numerous times with a maximum value just over 2300 K.

A GOES-16 Mesoscale Domain Sector was positioned over California beginning at 2115 UTC, providing imagery at 1-minute intervals — a comparison of Visible and Shortwave Infrared images (below) showed how quickly the hot thermal signature of the fire (yellow to red enhancement) advanced southwestward during the remaining 3 hours of daylight. Just northwest of the fire, Chico (station identifier KCIC) reported very low relative humidity values (6% at 21 UTC), as seen by the large spread between temperature and dewpoint late in the day.

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

1-km resolution NOAA-18 AVHRR Visible (0.64 µm), Near-Infrared “Vegetation” (0.86 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images (below) showed the bifurcation of the smoke plume as well as the large, very hot thermal signature of the fire at 1712 UTC or 9:12 AM local time.

NOAA-18 AVHRR Visible (0.64 µm), Near-Infrared "Vegetation" (0.86 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µµ) images [click to enlarge]

NOAA-18 AVHRR Visible (0.64 µm), Near-Infrared “Vegetation” (0.86 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

NOAA-20 Visible (0.64 µm), Near-Infrared

NOAA-20 VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Higher spatial resolution views were provided by NOAA-20 VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.45 µm) images (above) and by Aqua MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images (below). [Note: the NOAA-20 VIIRS images are incorrectly labeled as Suomi NPP]

Aqua MODIS Visible (0.65 µm), Near-Infrared

Aqua MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Alternative views of the NOAA-20 VIIRS and Aqua MODIS images are shown below (using legacy AWIPS-1).They include Shortwave Infrared images from the 2 satellites, which reveal the very large (approximately 10 miles in length) thermal anomaly or fire “hot spot”. Due to the very dry atmosphere over the region (MODIS 6.7 µm Water Vapor image), the smoke could be clearly seen on the MODIS 1.37 µm Cirrus image (since there was very little attenuation of upwelling 1.37 µm radiation by middle/upper-tropospheric water vapor).

NOAA-20 Visible (0.64 µm), Day/Night Band (0.7 µm), Near-Infrared "Snow/Ice" (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 Visible (0.64 µm), Day/Night Band (0.7 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm), Near-Infrared "Cirrus" (1.37 µm), Near-Infrared "Snow/Ice" (1.61 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm), Near-Infrared “Cirrus” (1.37 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

As a result of the unusual dryness air mass across the region, the 00 UTC Oakland sounding set a record low Total Precipitable Water value for the date (3 mm or 0.12 inch):

 

The Aqua MODIS Total Precipitable Water product at 2123 UTC (below) showed widespread values in the 3-5 mm range (darker shades of brown) over much or northern California. 12 hours later, the TPW value from the 12 UTC Oakland sounding was slightly lower (2.9 mm or 0.11 inch) — and the MODIS TPW product at 0921 UTC continued to show widespread dry air over California.

Aqua MODIS Total Precipitable Water product and Visible (0.65 µm) image at 2123 UTC [click to enlarge]

Aqua MODIS Total Precipitable Water product and Visible (0.65 µm) image at 2123 UTC [click to enlarge]

True Color Red-Green-Blue (RGB) imagery from NOAA-20 VIIRS (below) provided a good view of the smoke.

NOAA-20 VIIRS True Color RGB image [click to enlarge]

NOAA-20 VIIRS True Color RGB image [click to enlarge]

A NOAA-15 AVHRR Shortwave Infrared image at 0225 UTC or 6:25 PM local time (below) depicted the very large thermal anomaly of the fire.

NOAA-15 AVHRR Shortwave Infrared (3.7 µm) image; major highways are plotted in cyan, with Interstate highways plotted in red [click to enlarge]

NOAA-15 AVHRR Shortwave Infrared (3.7 µm) image; major highways are plotted in cyan, with Interstate highways plotted in red [click to enlarge]

The smoke had an adverse  impact on air quality over 100 miles from the fire source: the surface visibility dropped to 1 mile at Santa Rosa KSTS and 2 miles at San Francisco International Airport KSFO (below).

Time series of surface observations for Santa Rosa [click to enlarge]

Time series of surface observations from Santa Rosa [click to enlarge]

Time series of surface observations from San Francisco International Airport [click to enlarge]

Time series of surface observations from San Francisco International Airport [click to enlarge]

===== 09 November Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images [click to enlarge]

Nighttime VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images from NOAA-20 at 0849 UTC (above) and Suomi NPP at 0942 UTC (below) revealed the bright glow and the large, hot thermal anomaly of the Camp Fire.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.74 µm) images [click to enlarge]

VIIRS True Color RGB images from Suomi NPP at 2104 UTC and NOAA-20 at 2154 UTC (below) showed the broad extent of the smoke from the Camp Fire in northern California as well as the Woolsey Fire in southern California. These images were captured and processed by the CIMSS/SSEC Direct Broadcast ground station.

Suomi NPP VIIRS True Color RGB image at 2104 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB image at 2104 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2154 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2154 UTC [click to enlarge]

An animation of 1-minute GOES-16 Visible and Shortwave Infrared images (below) revealed several plume jumps over the fire source from 15-19 UTC — and toward the end of the day, a decrease in the areal coverage and intensity of hot pixels indicated that extreme fire conditions were easing and containment efforts were slowing the spread of the fire.

GOES-16 "Red" Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

Abnormally dry to extreme drought conditions across California were a contributing factor to this and other wildfires across the state.

US Drought Monitor conditions as of 06 November [click to enlarge]

US Drought Monitor conditions as of 06 November [click to enlarge]

====== 11 November Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

A sequence of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images centered at Paradise, California viewed using RealEarth (above) showed the spread of the Camp Fire thermal anomaly (dark black pixels) during the period 1943 UTC on 08 November to 1046 UTC on 11 November.

1-minute GOES-16 Visible and Shortwave Infrared images (below) showed the development of new smoke plume and hot thermal signatures around the periphery of the ongoing Camp Fire during the day on 11 November. As of 1849 UTC (10:49 AM local time), the fire had burned 109,000 acres and was listed as 25% contained.

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

The new smoke plume — as well as residual smoke from previous days of burning — could be seen on VIIRS True Color RGB imagery from Suomi NPP at 2029 UTC and NOAA-20 at 2114 UTC (below). The entire image swaths as captured and processed by the Direct Broadcast ground station at CIMSS/SSEC can be seen here and here.

Suomi NPP VIIRS True Color RGB image at 2029 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB image at 2029 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2114 UTC [click to enlarge]

NOAA-20 VIIRS True Color RGB image at 2114 UTC [click to enlarge]

The Camp Fire has claimed 42 lives and destroyed 6,522 homes and 260 businesses, making it both the deadliest and the most destructive wildfire on record for the state of California.