Mesovortex over Lake Michigan

March 12th, 2017 |

http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2017/03/170312_0740utc_suomi_npp_viirs_DayNightBand_rtma_surface_winds_Lake_Michigan_mesovortex_anim.gif

Suomi NPP VIIRS Day/Night Band (0.7 µm) image, with RTMA surface winds [click to enlarge]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

A Suomi NPP VIIRS Day/Night Band (0.7 µm) image (above) revealed the formative stage of a mesoscale vortex over Lake Michigan at 0740 UTC or 2:40 AM Central time on 12 March 2017.

During the subsequent daylight hours, GOES-16 Visible (0.64 µm) images (below) showed the continued development and motion of the mesovortex.

GOES-16 Visible (0.64 µm) images, with hourly surface reports [click to play animation]

GOES-16 Visible (0.64 µm) images, with hourly surface reports [click to play animation]

.

As was shown in a Tweet from NWS Marquette (above), beginning at 1741 UTC one of the GOES-16 Mesoscale Sectors was moved far enough northward to provide 1-minute imagery of the mesovortex (below; also available as an MP4 animation).

GOES-16 Visible (0.64 µm) images, with hourly surface reports [click to play animation]

GOES-16 Visible (0.64 µm) images, with hourly surface reports [click to play animation]

At South Haven, Michigan (KLWA), the surface visibility was reduced to 5 miles with light snow at 2014 UTC (below) as one of the more well-defined cloud elements associated with the mesovorex moved inland over that location.

Time series plot of South Haven, Michigan surface observations [click to enlarge]

Time series plot of South Haven, Michigan surface observations [click to enlarge]

Grass fires in Kansas, Oklahoma and Texas

March 6th, 2017 |

GOES-16 (left) and GOES-13 (right) 3.9 µm Shortwave Infrared images [click to play MP4 animation]

GOES-16 (left) and GOES-13 (right) 3.9 µm Shortwave Infrared images [click to play MP4 animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

Widespread grass fires began to burn across parts of southwestern Kansas, northwestern Oklahoma and the Texas Panhandle on 06 March 2017. The fires grew very quickly during the late morning and early afternoon hours, due to strong southwesterly winds (with gusts as high as 67 mph in Oklahoma)  behind a dryline (surface analyses); a cold front then moved southward across the region during the late afternoon and evening hours, bringing strong northerly/northwesterly winds. In a comparison shown above of Shortwave Infrared (3.9 µm) images — 1-minute interval (Mesoscale Sector) 2-km resolution GOES-16 vs. 5-7 minute interval (Rapid Scan Operations) 4-km resolution GOES-13 (also available as a 204 Mbyte animated GIF) — a large fire (the Starbuck Fire) can be seen making a fast northeastward run from Oklahoma into Kansas behind the dryline; then, after the passage of the cold front, the leading edge of that and another large fire turned southward and moved from Kansas back into Oklahoma. Another large fire in the Texas Panhandle (the Perryton Fire) moved rapidly eastward and crossed the border into Oklahoma. At least 7 deaths have resulted from these fires (CNN).

===== 07 March Update =====

The large size of the grass fire burn scars could be seen in comparisons of true-color and false-color Red/Green/Blue (RGB) images from Terra MODIS (1732 UTC), Suomi NPP VIRS (1857 UTC) and Aqua MODIS (1912 UTC) images viewed using RealEarth (below).

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Aqua MODIS true-color and false-color images [click to enlarge]

Aqua MODIS true-color and false-color images [click to enlarge]

The creation of true-color and false-color images such as these will be possible using the ABI spectral bands available on GOES-16 and the GOES-R series of satellites. A separate blog post highlighting other multi-spectral GOES-16 views of these fire burn scars on 07 March  is available here.

Storm “Doris” affects the British Isles

February 23rd, 2017 |

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts in knots [click to play animation]

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts in knots [click to play animation]

Storm “Doris” affected the British Isles on 23 February 2017, producing strong winds and heavy rainfall. The mid-latitude cyclone rapidly intensified from a central pressure of 1004 hPa at 12 UTC on 22 February to 972 hPa at 12 UTC on 23 February (surface analyses) . EUMETSAT Meteosat-10 Water Vapor (6.25 µm) images (above) exhibited the “scorpion tail” signature of a sting jet (Monthly Weather Review | Wikipedia), and surface wind gusts included 58 knots at Dublin, 64 knots at Wittering and 69 knots at Valley.

The corresponding daylight Meteosat-10 High Resolution Visible (0.8 µm) images (below) revealed better detail of the various cloud structures associated with the storm.

Meteosat-10 High Resolution Visible (0.8 µm) images, with hourly surface wind gusts in knots [click to play animation]

Meteosat-10 High Resolution Visible (0.8 µm) images, with hourly surface wind gusts in knots [click to play animation]

True-color Red/Green/Blue (RGB) images from Terra/Aqua MODIS and Suomi NPP VIIRS visualized using RealEarth are shown below. EUMETSAT posted a natural-color RGB animation here.

Terra MODIS (1039 UTC), Aqua MODIS (1226 UTC) and Suomi NPP VIIRS (1248 UTC) true-color RGB images [click to enlarge]

Terra MODIS (1039 UTC), Aqua MODIS (1226 UTC) and Suomi NPP VIIRS (1248 UTC) true-color RGB images [click to enlarge]

Sir Ivan Fire pyroCumulonimbus in New South Wales, Australia

February 12th, 2017 |

Himawari-8 0.64 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.4 µm Longwave Infrared Window (bottom) images [click to play animation]

Himawari-8 0.64 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.4 µm Longwave Infrared Window (bottom) images [click to play animation]

Himawari-8 Visible (0.64 µm), Shortwave Infrared (3.9 µm) and Longwave Infrared Window (10.4 µm) images (above / MP4 ; zoomed-in over fire source region: GIF / MP4) showed wildfires burning in New South Wales, Australia on 12 February 2017. The larger Sir Ivan Fire near Dunedoo produced a pyroCumulonimbus (pyroCb) cloud, which first cooled below the -40ºC Longwave Infrared brightness temperature “pyroCb threshold” at 0530 UTC (-47ºC) and quickly reached its minimum temperature of -56.6ºC at 0540 UTC. An animation of Himawari-8 true-color images is available here (courtesey of Dan Lindsey, RAMMB/CIRA).

Consecutive true-color images from Suomi NPP VIIRS (0402 UTC) and Aqua MODIS (0405 UTC) viewed using RealEarth (below) showed the large smoke plume about 1.5 hours prior to pyroCb development.

Suomi NPP VIIRS and Aqua MODIS true-color images [click to enlarge]

Suomi NPP VIIRS and Aqua MODIS true-color images [click to enlarge]

A high fire danger was well-anticipated across this portion of Australia:

Some ground-based photos of the pyroCb cloud: