Fatal severe weather outbreak in Oklahoma

March 25th, 2015
GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

Severe thunderstorms developed in the vicinity of a quasi-stationary frontal boundary which stretched from northeastern Oklahoma into northern Arkansas and southern Missouri late in the day on 25 March 2015. A plot of the SPC storm reports shows that these storms produced widespread large hail, damaging winds, and tornadoes —  including the first tornado-related fatality of 2015 at a trailer home park near Sand Springs, Oklahoma (just west/southwest of Tulsa). Storm reports also included hail as large as 4.25 inches in diameter, and wind gusts as high as 80 mph. 1-km resolution GOES-13 (GOES-East) 0.63 µm visible channel images (above; click image to play animation) showed the development of numerous thunderstorms across the region, some of which grew to be very large discrete supercells late in the afternoon and toward sunset. The tell-tale signature of cloud-top shadows from small-scale “overshooting tops” could be seen with many of these storms, indicating the presence of vigorous updrafts which penetrated the thunderstorm top (and likely the tropopause).

The corresponding 4-km resolution GOES-13 10.7 µm IR channel images (below; click image to play animation) revealed very cold cloud-top IR brightness temperatures (as cold as -71º C, dark black color enhancement), along with the formation of a well-defined Enhanced-V/Thermal Couplet (EV/TC) signature with the storm that produced large hail, damaging winds, and the fatal tornado southwest of Tulsa (station identifier KTUL). The EV/TC signature was first evident on the 22:00 UTC IR image, with cold/warm thermal couplet values of -65º/-53º C; the maximum thermal couplet spread was at 22:25 UTC, with -71º/-52º C, after which time the minimum IR brightness temperatures of the overshooting tops then began a warming trend: -67º C at 22:30 UTC, and -64º C at 22:37 UTC (suggesting a collapse of the vigorous updraft and overshooting top). Note that the storm-top EV/TC signature was displaced to the northwest of the surface hail/wind/tornado storm reports just west of Tulsa, due to parallax resulting from the large satellite viewing angle of GOES-East (which is positioned over the Equator at 75º W longitude). In addition, see the bottom of this blog post for examples of the NOAA/CIMSS ProbSevere product applied to these storms.

GOES-13 10.7 µm IR channel images (click to play animation)

GOES-13 10.7 µm IR channel images (click to play animation)

Automated overshooting top (OT) detection icons (small yellow thunderstorm symbols) are also plotted on the GOES-13 IR images. The initial OT detections began at 20:15 UTC, over the general area where there was later a report of 1.0-inch diameter hail at 20:40 UTC. A comparison of the 4-km resolution GOES-13 10.7 µm IR image at 20:15 UTC with a 375-meter (projected onto a 1-km AWIPS grid) Suomi NPP VIIRS 11.45 µm IR image at 20:16 UTC (below) demonstrates (1) the advantage of improved spatial resolution for detecting the minimum cloud-top IR brightness temperature of thunderstorm overshooting tops (-60º C with GOES, vs -75º C with VIIRS), and (2) minimal parallax effect with polar-orbiting satellite imagery such as that from Suomi NPP, for more accurate geolocation of such potentially important storm features.

GOES-13 10.7 µm IR and Suomi NPP VIIRS 11.45 µm IR channel images

GOES-13 10.7 µm IR and Suomi NPP VIIRS 11.45 µm IR channel images

A comparison of 1-km resolution POES AVHRR 0.86 µm visible channel and 12.0 µm IR channel images (below) provided a detailed view of the storms at 22:54 UTC, which were electrically very active at that time (producing over 1900 cloud-to-ground lightning strikes in a 15-minute period). The coldest cloud-top IR brightness temperature was -77º C, located just southwest of Tulsa — this was likely the overshooting top associated with the supercell thunderstorm that produced the fatal tornado.

POES AVHRR 12.0 µm IR channel and 0.86 µm visible channel images, with METAR surface reports, lightning, and SPC storm reports

POES AVHRR 12.0 µm IR channel and 0.86 µm visible channel images, with METAR surface reports, lightning, and SPC storm reports

10-km resolution GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (below; click image to play animation) showed the rapid trend in destabilization of the air mass along and south of the frontal boundary, with CAPE values eventually exceeding 4300 J/kg (purple color enhancement).

GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (click to play animaton)

GOES-13 sounder Convective Available Potential Energy (CAPE) derived product images (click to play animaton)

10-km resolution GOES-13 sounder Total Precipitable Water (TPW) derived product images (below; click image to play animation) indicated that TPW values of 30 mm or 1.18 inch and greater (yellow enhancement) were present along and south the frontal boundary in northeastern Oklahoma.

GOES-13 sounder Total Precipitable Water derived product imagery (click to play animation)

GOES-13 sounder Total Precipitable Water derived product imagery (click to play animation)

At 19:19 UTC, the 4-km resolution MODIS Total Precipitable Water derived product image (below) showed a plume of moisture with TPW values as high as 41.7 mm or 1.64 inches (red enhancement) moving toward the Tulsa area.

MODIS 0.65 um visible channel and Total Precipitable Water derived product images

MODIS 0.65 um visible channel and Total Precipitable Water derived product images

Additional information about this event can be found at the NWS Tulsa and United States Tornadoes sites.

Severe Weather over the Southern Plains

March 25th, 2015

The Storm Prediction Center in Norman issued a Moderate Risk of severe weather over the Southern Plains on March 25, 2015. Convective products were available in AWIPS to help monitor the evolution of this event.

Cloud-Top Cooling (10.7 µm imagery) for GOES-13, 1907-2000 UTC on 25 March 2015 (Click to enlarge)

Cloud-Top Cooling (10.7 µm imagery) for GOES-13, 1907-2000 UTC on 25 March 2015 (click to enlarge)

For example, the Cloud-Top Cooling product, above, monitored rapid development of convection over eastern Arkansas just between 1915 and 2000 UTC (the 10.7µm imagery for about the same time is here). Cloud-Top Cooling depicts where the strongest vertical cloud growth is occurring and is most useful for the initiation of the convection (or subsequent re-energized growth). The NOAA/CIMSS ProbSevere product, below, can also monitor the evolution of the storm from initial growth through maturity and beyond.

NOAA/CIMSS ProbSevere Product, 1900-2028 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere Product, 1900-2028 UTC on 25 March 2015 (click to animate)

The NOAA/CIMSS ProbSevere product gauges the likelihood of a storm first producing severe weather (of any kind) in the next 60 minutes. It combines information about the environment (Most Unstable CAPE, Environmental Shear) from the Rapid Refresh Model, about the growing cloud (Vertical Growth Rate as a percentage of the troposphere per minute and Glaciation Rate, also as a percentage per minute), and Maximum Expected Hail Size (MESH) from the MRMS. The storm over east-central OK, crossing over the border of Arkansas, showed a ProbSevere value of 45% at 2004 UTC and of 87% at 2006 UTC; 1-inch hail was reported with this storm (in Roland, OK) at 2005 UTC, and a Severe Thunderstorm warning was issued at 2026 UTC. AWIPS-2 imagery that includes readouts for this storm are below.

NOAA/CIMSS ProbSevere product, 2000-2026 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere product, 2000-2026 UTC on 25 March 2015 (click to animate)

Suomi NPP overflew the region shortly before convection developed, and the NUCAPS soundings in the clear pre-convective air described the thermodynamics of the environment. The location of the NUCAPS soundings are shown below, overlain on top of the Suomi NPP VIIRS visible imagery. The Red and Yellow stars show two sounding locations to be discussed. It’s helpful when using NUCAPS soundings to know surface values of temperature and dewpoint, because it can be helpful to adjust the NUCAPS soundings so that surface values are more in line with observations as reported by METARS. Accordingly, the VIIRS visible image with surface METARS plotted is here. Dewpoints in eastern OK and western AR are close to 60 F/15 C.

NUCAPS Sounding Locations at 1833 UTC on 25 March 2015;  Red and Yellow Stars indicate sounding locations described below (Click to enlarge)

NUCAPS Sounding Locations at 1833 UTC on 25 March 2015; Red and Yellow Stars indicate sounding locations described below (Click to enlarge)

The soundings from the two starred sites are below. In both cases, the original sounding and a sounding that has been modified by increasing the lowest dewpoint by 2 C are shown. Most Unstable CAPE for the plotted soundings (original and modified) are indicated. NUCAPS Soundings suggest greater instability over west-central/northwest Arkansas than over southwestern Arkansas.

NUCAPS Sounding at the red star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the red star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the yellow star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the yellow star location, both original and modified (Click to enlarge)

A short GOES-13 visible image animation as the convection started is shown below.

GOES-13 Visible 0.65 µm Imagery (Click to animate)

GOES-13 Visible 0.65 µm Imagery (Click to animate)

[Added: This severe weather outbreak caused the first tornado fatality of 2015, in Tulsa County, OK. Satellite imagery of those storms can be found here. ProbSevere product animations from 2024 to 2230 UTC on 25 March and also from 2206 UTC on 25 March to 0012 UTC on 26 March are shown below]

NOAA/CIMSS ProbSevere product, 2024-2230 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere product, 2024-2230 UTC on 25 March 2015 (click to animate)

NOAA/CIMSS ProbSevere product, 2206 UTC on 25 March 2015 to 0012 UTC on 26 March 2012 (Click to animate)

NOAA/CIMSS ProbSevere product, 2206 UTC on 25 March 2015 to 0012 UTC on 26 March 2015 (click to animate)

Severe Weather Outbreak Across the Deep South

October 14th, 2014
Suomi NPP 11.35 µm Infrared  Imagery, 1933 UTC 13 October 2014, with Lightning strike data overlain  (click to enlarge)

Suomi NPP 11.35 µm Infrared Imagery, 1933 UTC 13 October 2014, with Lightning strike data overlain (click to enlarge)

An intense extratropical cyclone over the central United States spawned a Quasi-Linear Convective System that moved through the Deep South on 12-13 October 2014; the QLCS was responsible for a spate of severe weather including wind damage, hail and tornadoes (Storm reports from 12 October, 13 October). The image above, from 1933 UTC on 13 October, shows Suomi NPP 11.35 µm imagery over Mississippi. Widespread cold cloud tops are apparent, with embedded overshooting tops. Indeed, the top in southern Hinds County may have been associated with severe Hail. Visible imagery from Suomi NPP (link) also show overshooting tops. The amount of solar reflectance at mid-day, however, makes it difficult to identify all features. The 1.61 µm imagery, below, is darker because ice crystals at cloud top will absorb some energy at that wavelength, yet most features are still recognizable.

Suomi NPP 1.61 µm Near-Infrared  Imagery, 1933 UTC 13 October 2014 (click to enlarge)

Suomi NPP 1.61 µm Near-Infrared Imagery, 1933 UTC 13 October 2014 (click to enlarge)

The GOES-13 Water Vapor Animation, below, is a textbook example of cyclogenesis. Strong sinking in and around the comma head is indicated by the warm water vapor brightness temperatures observed there. This system is also characterized by a very sharp upstream trough and developing warm conveyor belt that turns anticyclonic as it moves over the upper Great Lakes.

GOES-13 Water Vapor 6.7 µm Infrared  Imagery, 1200-2100 UTC 13 October (click to animate)

GOES-13 Water Vapor 6.7 µm Infrared Imagery, 1200-2100 UTC 13 October (click to animate)

GOES-13 10.7 infrared imagery animation, below (also available here as an mp4 file or here as a YouTube video), shows evidence of many overshooting tops in the strong thunderstorms that developed across the deep south. (Indeed, automatic detection of overshooting tops(and cumulative totals from this website) — show some on the 12th, but many more on the 13th) as the extratropical cyclone became organized.

GOES-13 10.7 µm Infrared Imagery, 1600 UTC 13 October - 0700 UTC 14 October 2014 (click to animate)

GOES-13 10.7 µm Infrared Imagery, 1600 UTC 13 October – 0700 UTC 14 October 2014 (click to animate)

The strong system enjoyed a vigorous moisture feed from the Gulf of Mexico, as shown in the MIMIC Total Precipitable Water animation below. Moisture surged northward especially after 1200 UTC on 13 October, and the 24-hour precipitation totals ending at 1200 UTC on 14 October (from this site) showed heavy rain over much of Tennessee and Alabama (and adjacent states).

MIMIC Total Precipitable Water for 72 hours 1200 UTC 14 October 2014 (click to enlarge)

MIMIC Total Precipitable Water for 72 hours 1200 UTC 14 October 2014 (click to enlarge)

GOES Sounder data also shows a quick moistening on 13 October as high Precipitable Water air over the Gulf of Mexico surges northward. Moisture from Pacific Hurricane Simon is unlikely to be a contributing factor to this storm.

GOES Sounder DPI estimates of Total Precipitable Water from through 6 October through October 14 2014 (click to enlarge)

MIMIC Total Precipitable Water for 72 hours 1200 UTC 14 October 2014 (click to enlarge)

=======================================================================================

MTSAT-2 and GOES-15 Water Vapor (6.5 µm)Infrared imagery, times as indicated (click to enlarge)

MTSAT-2 and GOES-15 Water Vapor (6.5 µm)Infrared imagery, times as indicated (click to enlarge)

An interesting question arises: Where did some of the energy and moisture for this (somewhat early in the season) storm originate? Water Vapor imagery from MTSAT-2 and GOES-15 show clearly that the Super-Typhoon Phanfone, that was near Japan on 4-5 October, contributed some of the energy to the impulse that moved across the Pacific Ocean and then over the Ridge on the West Coast of North America before diving southeast and forcing cyclogenesis. In the animation above, Phanfone approaches Japan, and is picked up by a mid-latitude jet that crosses the Pacific (tracked by red arrow), induces strong cyclogenesis in the Gulf of Alaska on 8 October and then continues up and over the ridge on the west coast of North America.

Mesoscale Convective System over the Southern Plains

October 6th, 2014
<strong>Suomi NPP VIIRS Day/Night Band (0.70 µm), Infrared Imagery (11.45 µm) and Day/Night Band imagery with lightning strikes at 0842 UTC on 6 October 2014</strong> (click to animate)

Suomi NPP VIIRS Day/Night Band (0.70 µm), Infrared Imagery (11.45 µm) and Day/Night Band imagery with lightning strikes at 0842 UTC on 6 October 2014 (click to animate)

The Suomi NPP VIIRS image toggle, above, from the pre-dawn hours (3:42 am local time) on 6 October 2014 shows a 0.7 µm Day/Night Band image and an 11.45 µm Infrared image, along with observations of postive and negative lightning strikes. With ample illumination by moonlight, the “visible image at night” Day/Night Band image highlighted areas of convective overshooting tops, but also included bright horizontal stripes that are associated with intense lightning activity; after scanning a particularly bright area of lightning in Arkansas, this image also showed a darker “post-saturation recovery” stripe downscan (to the southeast), which stretched from central Arkansas into Mississippi. This vigorous convective system dropped southeastward from Oklahoma towards the Gulf of Mexico, eventually becoming a Quasi-Linear Convective System (QLCS) which produced hail and wind damage (with one fatality) across parts of northeastern Texas and far northwestern Louisiana (SPC storm reports).

GOES Sounder DPI Lifted Index (click to animate)

GOES Sounder DPI Lifted Index (click to animate)

The southward-dropping Mesoscale Convective System followed a channel of unstable air as diagnosed by the GOES Sounder, above. Note that the Lifted Index values were smaller (less instability) along the path that the system had moved. Total Precipitable water was also enhanced in that corridor, suggesting a region where moisture return from the Gulf of Mexico was ongoing and concentrated.

GOES Infrared Imagery(10.7 µm) at 1600 UTC, and Pilot Reports of Turbulence (click to enlarge)

GOES Infrared Imagery (10.7 µm) at 1600 UTC, and Pilot Reports of Turbulence (click to enlarge)

Mesoscale Convective Systems can exhibit signatures that suggest the presence of turbulence in the atmosphere. In the GOES-13 IR image above, parallel filaments or “transverse bands” of cirrus  (extending approximately north-south) on the poleward side of the MCS suggest the presence of turbulence, and scattered pilot reports of Moderate Turbulence confirm that. Visible MODIS Imagery, below, also shows the transverse bands, as well as the outflow boundary arcing from Houston to the northwest and north.

Terra MODIS visible imagery (0.65 µm) at 1705 UTC  (click to enlarge)

Terra MODIS visible imagery (0.65 µm) at 1705 UTC (click to enlarge)

An animation of hourly GOES-13 Visible imagery, below, shows the motion of the western portion of the outflow boundary as the decaying QLCS moved into the Gulf of Mexico.

GOES-13 Visible (0.65µm) imagery (click to animate)

GOES-13 Visible (0.65µm) imagery (click to animate)

GOES-13 6.5 µm water vapor channel imagery, below, displayed a signature of subsidence immediately upstream of the dissipating MCS, in the form of an arc of warmer/drier (yellow to orange color enhancement) brightness temperatures that extended from the Texas coast into central Arkansas. One rapidly-developing convective cell which formed along the advancing outflow boundary was responsible for severe turbulence in eastern Texas; the subtle signal of the westward-propagating outflow boundary could also be followed on the water vapor imagery.

<strong>GOES-13 6.5 µm water vapor channel images, with pilot reports of turbulence</strong> (click to play animation)

GOES-13 6.5 µm water vapor channel images, with pilot reports of turbulence (click to play animation)