Hurricane Florence continues to approach the southeastern US

September 11th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

Hurricane Florence maintained Category 4 intensity on the morning of 11 September 2018 — and 1-minute (initially 30-second, until 1345 UTC) Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed improving eye structure after the tropical cyclone completed an eyewall replacement cycle during the preceding nighttime hours (MIMIC TC). A distinct pattern of transverse banding was also evident within the northern semicircle of Florence on Infrared imagery.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

DMSP-18 SSMIS Microwave (85 GHz) imagery from the CIMSS Tropical Cyclones site (below) showed a large eye at 1015 UTC, and also at 1103 UTC.

DMSP-18 SSMIS Microwave (85 GHz) and GOES-16

DMSP-18 SSMIS Microwave (85 GHz) and GOES-16 “Clean” Infrared Window (10.3 µm) images at 1015 UTC [click to enlarge]

GOES-16 Upper-level Water Vapor (6.2 µm) images with Derived Motion Winds (below) revealed that a well-defined high altitude outflow channel had developed northwest of Florence, helping the storm to maintain its intensity.

GOES-16 Upper-level Water Vapor (6.2 µm) images, with Derived Motion Winds [click to play MP4 animation]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with Derived Motion Winds [click to play MP4 animation]

1-minute GOES-16 True Color Red-Green-Blue (RGB) images (courtesy of Kathy Strabala, CIMSS; details) are shown below. A larger-scale RGB animation beginning at sunrise is available here (courtesy of Rick Kohrs, SSEC).

GOES-16 natural color RGB images [click to play MP4 animation]

1-minute GOES-16 True Color RGB images, 1330-1440 UTC [click to play MP4 animation]

Taking a closer look at the center of Florence later in the day, 1-minute GOES-16 data (below) showed mesovortices within the eye on Visible imagery, along with a narrow radial band of colder (darker red) cloud-top infrared brightness temperatures about 30-50 miles from the inner edge of the eyewall.

GOES-16

GOES-16 “Red” Viisible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

===== 12 September Update =====

Florence remained at Category 4 intensity early in the day as it continued its northwestward motion toward the southeast coast of the US on 12 September. A 20-hour period of 1-minute GOES-16 Infrared images (from 0000-2015 UTC) is shown below.

1-minute GOES-16

1-minute GOES-16 “Clean” Infrared Window (10.3 µm) images, from 0000-2015 UTC [click to play MP4 animation]

Nighttime toggles between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 are shown below (courtesy of William Straka, CIMSS). Bright lightning-illuminated cloud areas can be seen on the DNB images distant to the north and northwest of the storm center; with minimal illumination from the Moon (which was in the Waxing Crescent phase, at only 10% of Full), Florence was illuminated primarily via airglow. On the Infrared images, a coarse pattern of transverse banding was evident along the far southern and western periphery of the storm.

Suomi NPP VIIRS Day/Night Band and Infrared Window images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band and Infrared Window images [click to enlarge]

NOOA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A sequence of Terra/Aqua MODIS and Suomi NPP VIIRS Infrared images (below) showed dramatic changes in the cold central dense overcast (CDO) of Florence between 02 and 18 UTC.

Infrared Window images from Terra MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

Infrared Window images from Terra MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

During the morning hours, 1-minute GOES-16 Visible and Infrared images (below) once again displayed a distinct eye and eyewall structure, with surface mesovortices evident within the eye. A curious linear standing wave — extending radially outward to the northeast of the storm center — developed from about 13-15 UTC (best seen on Infrared images).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

ASCAT surface scatterometer winds from Metop-A (below) were as strong as 76 knots just northeast of the eye at 1450 UTC.

GOES-16

GOES-16 “Red” Visible (0.64 µm) image with Metop-A ASCAT surface scatterometer winds [click to enlarge]

A stereoscopic animation using GOES-16 and GOES-17 imagery is shown below — to view in three dimensions, cross your eyes until 3 equal images are apparent, then focus on the image in the center. *Note: GOES-17 images shown here are preliminary and non-operational*

Stereoscopic animation using GOES-16 and GOES-17

Stereoscopic animation using GOES-16 and GOES-17 “Red” Visible (0.64 µm) imagery [click to play animation]

During the afternoon hours, GOES-16 Visible and Infrared images (below) showed that the eye presentation  was beginning to deteriorate as Florence weakened to Category 3 intensity by 21 UTC.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window {10.3 µm) images [click to play MP4 animation]

The MIMIC Total Precipitable Water product (below) indicated that high TPW values associated with Florence began to move inland along the US East Coast by the end of the day.

MIMIC Total Precipitable Water product [click to enlarge]

MIMIC Total Precipitable Water product [click to enlarge]

Hurricane Florence

September 9th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) iimages [click to play MP4 animation]

After previously weakening from a Category 4 hurricane (on 04 September) to a tropical storm on 07 September (track/intensity), Florence re-intensified to become a Category 1 hurricane at 15 UTC on 09 September 2018. 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.63 µm) are shown above, with the corresponding “Clean” Infrared Window (10.3 µm) images shown below. An eye structure appeared for brief intervals during the day, but was often masked by cloud debris from a series of convective bursts within the surrounding eyewall.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

GPM GMI Microwave (85 GHz) image at 1811 UTC [click to enlarge]

GPM GMI Microwave (85 GHz) image at 1811 UTC [click to enlarge]

GPM GMI (above) and DMSP-16 SSMIS (below) Microwave (85 GHz) images from the CIMSS Tropical Cyclones site revealed that the eye was still partially open at 1811 UTC and 1945 UTC.

DMSP-16 SSMIS Microwave (85 GHz) image at 1845 UTC [click to enlarge]

DMSP-16 SSMIS Microwave (85 GHz) image at 1845 UTC [click to enlarge]

===== 10 September Update =====

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with GLM Group lightning [click to enlarge]

GOES-16 GLM lightning Groups (aggregates of GLM lightning Events) are plotted on “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below), courtesy of Dave Santek, SSEC.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with GLM Group lightning [click to enlarge]

Overlapping GOES-16 and GOES-17 Mesoscale Domain Sectors were positioned over Hurricane Florence beginning at 1200 UTC (providing imagery at 30-second intervals) — Visible animations are shown below.

* GOES-17 images shown here are preliminary and non-operational *

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play MP4 animation]

Longer animations of 30-second GOES-16 Visible and Infrared images viewed using AWIPS (below) provided a better view of  the mesovortices within the eye. Florence rapidly intensified (ADT | SATCON) to a Category 4 hurricane during this period.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

One particularly large mesovortex rotated around the eastern edge of the eye after 2100 UTC, significantly eroding the eyewall (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

Later in the early evening hours, GOES-16 Infrared imagery (below) showed an area of pronounced cloud-top warming and a thinning of cloud material just south of the eyewall, as Florence began to undergo an eyewall replacement cycle.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

Super Typhoon Jebi

August 31st, 2018 |

Himawari-8

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play MP4 animation]

West Pacific Typhoon Jebi underwent a period of very rapid intensification on 30 August 2018 (ADT | SATCON), reaching Category 5 Super Typhoon intensity. Himawari-8 rapid-scan (2.5 minute interval) “Clean” Infrared Window (10.4 µm) images (above) showed that Jebi began to exhibit an annular appearance with a nearly symmetric eyewall as it moved through the Northern Mariana Islands (north of Guam). The eye passed just south of the uninhabited volcanic island of Pagan around 16 UTC on 30 August.

Himawari-8 “Red” Visible images (below) revealed mesovortices within the eye of Jebi.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm) images [click to play MP4 animation]

Toggles between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (below) showed more detailed views of (1) the well defined eye, (2) surface mesovortices within the eye, and (3) storm-top gravity waves that were propagating away from the eyewall region. With the Moon in the Waning Gibbous phase (at 77% of Full), ample illumination was available to provide detailed “visible images at night” using the VIIRS DNB.

NOAA-20 Day/Night Band (0.7 µm) and infrared Window (11.45 µm) images at 1602 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and infrared Window (11.45 µm) images at 1602 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and infrared Window (11.45 µm) images at 1652 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and infrared Window (11.45 µm) images at 1652 UTC [click to enlarge]

Convective Rain Rate and Surface Rain Rate products derived from GCOM-W1 AMSR2 data (below) showed the heavy rainfall occurring within the eyewall region and a primary feeder band to the west. VIIRS and AMSR2 images courtesy of William Straka, CIMSS.

GCOM-W2 AMSR2 Convective Rain Rate and Surface Rain Rate products [click to enlarge]

GCOM-W2 AMSR2 Convective Rain Rate and Surface Rain Rate products [click to enlarge]

As Jebi tracked west-northwestward across the West Pacific, products from the CIMSS Tropical Cyclones site showed that it had been moving over waters having high values of Sea Surface Temperature and Ocean Heat Content (below).

Track of Jebi, with Sea Surface Temperature and Ocean Heat Content [click to enlarge]

Track of Jebi, with Sea Surface Temperature and Ocean Heat Content [click to enlarge]

A 48-hour animation of the MIMIC-TC product (below) showed the evolution of the Jebi from 29-31 August. The storm was completing an eyewall replacement cycle near the end of the animation, with the eye becoming distinctly larger.

MIMIC-TC product, 29-31 August

In a comparison of DMSP-16 SSMIS Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images at 1900 UTC (below), the Microwave data helped to better visualize the structure of the large eyewall in addition to a long, narrow feeder band wrapping inward toward the eye.

DMSP-16 SSMIS Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images [click to enlarge]

DMSP-16 SSMIS Microwave (85 GHz) and Himawari-8 Infrared Window (10.4 µm) images [click to enlarge]

Hurricane Lane

August 22nd, 2018 |

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (above; courtesy of William Straka, CIMSS) showed the eye of Hurricane Lane in the central Pacific Ocean at 1208 UTC on 22 August 2018, a few hours after it reached Category 5 intensity (SATCON). Surface mesovortices were evident within the eye, and storm-top gravity waves were seen propagating west-southwestward away from the eyewall.

 

GOES-15 (GOES-West) Infrared Window (10.7 µm) images (below) revealed a significant amount of trochoidal motion as Lane moved northwestward during the 21 August – 22 August period. The storm weakened somewhat to Category 4 intensity as of 15 UTC on 22 August.

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

Hurricane Lane was near the limb of the Full Disk view of both Himawari-8 and GOES-17, as seen in a comparison of “Red” Visible (0.64 µm) images from the two satellittes (below).

* GOES-17 images shown here are preliminary and non-operational *

“Red” Visible (0.64 µm) images from Himawari-8 (left) and GOES-17 (right) [click to play animation | MP4]

DMSP-16/17 SSMIS Microwave (85 GHz) images from the CIMSS Tropical Cyclones site are shown  below.

DMSP-16 SSMIS Microwave (85 GHz) image at 1411 UTC [click to enlarge]

DMSP-16 SSMIS Microwave (85 GHz) image at 1411 UTC [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1717 UTC [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1717 UTC [click to enlarge]

Since forming as Tropical Depression 14E on 14 August. Lane had been moving westward over water having only modest Ocean Heat Content but Sea Surface Temperature values of 27-28ºC (below).

Track of Hurricane Lane, with maps of Ocean Heat Content and Sea Surface Temperature [click to enlarge]

Track of Hurricane Lane, with maps of Ocean Heat Content and Sea Surface Temperature [click to enlarge]

===== 23 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1150 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1150 UTC [click to enlarge]

Hurricane Lane remained at Category 4 intensity during the early hours of 23 August — however, the satellite presentation began to deteriorate as the eye became cloud-filled as seen in toggles between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from NOAA-20 at 1150 UTC (above) and Suomi NPP at 1240 UTC (below). An interesting narrow “warm trench” signature became very pronounced within the northwestern quadrant of Lane on the later Suomi NPP Infrared image.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1240 UTC [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1240 UTC [click to enlarge]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images, with hourly plots of data from Buoy 51002 [click to play animation | MP4]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images, with hourly plots of data from Buoy 51002 [click to play animation | MP4]

GOES-15 Visible (0.63 µm) and Infrared Window (10.7 µm) images after sunrise (above) showed that the eye of Lane moved over Buoy 51002 — located about 200 miles southwest of the Big Island of Hawai’i — just after 19 UTC (below). The peak wind gust measured by the buoy was 93 knots or 107 mph ay 1830 UTC; the lowest wind and air pressure values were recorded while in the eye from 1930-2110 UTC.

Plot of wind speed/gust and air pressure data from Buoy 51002

Plot of wind speed/gust and air pressure data from Buoy 51002

At 1703 UTC Buoy 51002 was located just west of the eye, beneath strong convection of the eyewall as seen on a DMSP-17 SSMIS Microwave (85 GHz) image (below).

DMSP-17 SSMIS Microwave (85 GHz) image at 1703 UTC, with and without plots of buoy data [click to enlarge]

DMSP-17 SSMIS Microwave (85 GHz) image at 1703 UTC, with and without plots of buoy data [click to enlarge]

A Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 2334 UTC or 1:34 pm HST on 23 August is shown below.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

===== 24 August Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

A Suomi NPP VIIRS Day/Night Band (0.7 µm) image (above) showed Category 3 Hurricane Lane at 1211 UTC or 2:11 am HST on 24 August. Thin tendrils of high-altitude transverse banding can be seen along the western and northern periphery of the storm.

GOES-15 Infrared Window (10.7 µm) images (below) showed the development of the transverse banding as Lane eventually weakened to a Category 1 storm during the course of the day; a rapid warming of the cloud-top infrared brightness temperatures began around 2100 UTC. Even though the Ocean Heat Content and Sea Surface Temperature in the waters immediately west of Hawai’i were still fairly high, the hurricane was moving into an environment of increasingly unfavorable deep-layer wind shear which acted to decouple the low-level and mid-level circulations and hasten the weakening process.

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Infrared Window (10.7 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images (below) provided a slightly closer look at the storm during the daylight hours.

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

A dramatic difference was seen between Suomi NPP VIIRS Day/Night Band images at 1211 UTC and 2315 UTC (below), as Lane weakened from a Category 3 to a Category 1 hurricane in this 11-hour period.In spite of the rapid weakening, very heavy rainfall continued across much of the State, with 24-hour amounts exceeding 20 inches at some locations on the Big Island of Hawai’i. Note that the Low-Level Circulation Center (LLCC) of Lane had become exposed on the later 2315 UTC image (in spite of a thin veil of cirrus overhead), and was located to the southwest of the rapidly-dissipating convection that was closer to the islands.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

===== 25 August Update =====

On the islands, the highest wind gust associated with Lane was 74 mph — and storm total rainfall amounts greater than 50 inches were recorded, with Hilo setting a record 3-day accumulation of 31.85 inches and a record 4-day accumulation of 36.76 inches. Rainfall rates on the Big Island exceeded 19 inches in 24 hours on 23 July.

Time series of surface reports from Hilo, Hawai'i [click to enlarge]

Time series of surface reports from Hilo, Hawai’i [click to enlarge]

Hourly images of the MIMIC Total Precipitable Water (TPW) product during the period 22-25 August (below) showed the circulation of Lane transporting high amounts of moisture across the Hawaiian Islands. TPW values of 60 mm (2.4 inches) or more were also seen in rawinsonde data from Hilo on many of these days.

MIMIC Total Precipitable Water product during 22-25 August [click to play animation | MP4]

MIMIC Total Precipitable Water product during 22-25 August [click to play animation | MP4]

A toggle between Suomi NPP VIIRS Day/Night Band images from 24 August / 2315 UTC and 25 August / 1152 UTC (below) showed a slow north/northwestward motion of the exposed LLCC of what had further weakened to Tropical Storm Lane.

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]