Strong storm in the Bering Sea

November 26th, 2017 |

Himawari-8 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Himawari-8 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Himawari-8 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above) showed a strong storm as it was rapidly intensifying south of the Aleutian Islands and moving into the Bering Sea during the 25-26 November 2017 period (surface analyses), producing hurricane force winds. Hourly surface wind gusts (knots) are plotted in red on the images.

GOES-15 (GOES-West) Visible (0.63 µm) images during the daylight hours of 25 and 26 November (below) offered a more detailed view of the storm. As with the water vapor images above, hourly surface wind gusts (knots) are plotted in red on the images.

GOES-15 Visible (0.63 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play animation]

A plot of hourly surface observations from Adak Island in the Aleutians is shown below. Peak wind gusts of 91 mph were reported on Adak Island and at Unalaska.

Time series of surface observations for Adak, Alaska [click to enlarge]

Time series of surface observations for Adak, Alaska [click to enlarge]

Also of note: the surface pressure at St. Paul Island dropped to unusually low levels as the storm moved into the Bering Sea.

Time series of surface observations from St. Paul Island [click to enlarge]

Time series of surface observations from St. Paul Island [click to enlarge]

Alaska’s first -40º temperature of the 2017-2018 winter season

November 19th, 2017 |

NOAA-18 Infrared Window (10.8 mm) image, with surface identifiers and air temperatures plotted in red [click to enlarge]

NOAA-18 Infrared Window (10.8 mm) image, with surface identifiers and air temperatures plotted in red [click to enlarge]

Alaska’s first (official) surface air temperature of -40º or colder for the 2017-2018 winter season was reported by the Cooperative Observer at Chicken (-43ºF) on 19 November 2017. A NOAA-18 Infrared Window (10.8 µm) image at 0320 UTC (above) showed cold air drainage into river valleys, with the coldest infrared brightness temperatures around -40ºC/-40ºF (darker blue color enhancement). Chicken is located about midway between Eagle (PAEG) and Northway (PAOR), where 03 UTC surface air temperatures were -17ºF and -24ºF, respectively. However, PAEG reached their minimum temperature around 11 UTC after additional hours of cloud-free radiational cooling.

An automated RAWS site at Chicken reached a minimum temperature of -34ºF at 1120 UTC — the dew point at that time was -42ºF. However, a MesoWest map (below) shows that the RAWS tower is located on a small hill (at an elevation of 2060 feet) — and the Cooperative Observer instrument shelter was likely located in the lower elevations of the settlement.

MesoWest map showing the location of the Chicken RAWS site [click to enlarge]

MesoWest map showing the location of the Chicken RAWS site [click to enlarge]

For comparison, note the 2011-2012 and 2010-2011 winter seasons.

Wildfire burning in Greenland

August 4th, 2017 |
GOES-16 Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation]

GOES-16 Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; a zoomed-in version is available here) displayed a subtle hazy signature of a smoke plume along with an intermittent “hot spot” (darker black pixels) associated with  a small fire — located near the center of the cyan circle — that was burning close to the southwest coast of Greenland on 01 August 2017. The approximate latitude/longitude coordinates of the fire were 67.87º N / 51.48º W, a location about halfway between Ilulissat (station identifier BGJN) and Kangerlussuaq (station identifier BGSF) and about halfway between the western edge of the Greenland Ice Sheet and the west coast .

Closer views using daily composites of 250-meter resolution Terra and Aqua MODIS true-color Red/Green/Blue (RGB) images (from 30 July to 04 August), sourced from RealEarth (below) indicated that the fire may have started close to 1540 UTC on 31 July — when a small white smoke and/or cloud feature (just north of the cursor) was seen at the fire source location on the Terra image (overpass time). The Aqua overpass time was around 1600 UTC.

Daily composites of Terra MODIS true-color RGB images, from 30 July to 04 August [click to enlarge]

Daily composites of Terra MODIS true-color RGB images, from 30 July to 04 August [click to enlarge]

Daily composites of Aqua MODIS true-color RGB images, from 30 July to 04 August [click to enlarge]

Daily composites of Aqua MODIS true-color RGB images, from 30 July to 04 August [click to enlarge]

Similar daily composite RGB images from Suomi NPP VIIRS (31 July to 04 August) are shown below. Note that the initial fire signature was not seen on the 31 May VIIRS image, due to the earlier overpass time  (1513 UTC) of the Suomi NPP satellite.

Daily composites Suomi NPP VIIRS true-color RGB images,.from 31 July to 04 August [click to enlarge]

Daily composites of Suomi NPP VIIRS true-color RGB images,.from 31 July to 04 August [click to enlarge]

On 03 August, a 1507 UTC overpass of the Landsat-8 satellite provided a 30-meter resolution Operational Land Imager (OLI) false-color RGB image of the fire (below). This was the same day that a pilot took photos of the fire, as reported on the Wildfire Today site.

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 OLI false-color RGB image [click to enlarge]

A comparison of one “before” (27 July) and two “after” (03 and 05 August) Landsat-8 OLI false-color RGB images (below) showed differences in smoke plume transport as the wind direction changed.

Landsat-8 false-color images on 27 July, 03 August and 05 August [click to enlarge]

Landsat-8 OLI false-color images on 27 July, 03 August and 05 August [click to enlarge]

It is possible that this “natural fire” is similar to the Smoking Hills type of spontaneous combustion that has been observed in the Canadian Arctic (thanks to Ray Hoff, retired UMBC Professor of Physics, for that tip).

Credit to Mark Ruminski (NOAA/NESDIS) for first bringing this interesting event to our attention.

===== 09 August Update =====

The animations of daily Terra and Aqua true-color RGB images (below) have been extended to 09 August and 08 August, respectively.

Daily composites of Terra MODIS true-color RGB images, from 30 July to 09 August [click to enlarge]

Daily composites of Terra MODIS true-color RGB images, from 30 July to 09 August [click to enlarge]

Daily composites of Aqua MODIS true-color RGB images, from 30 July to 08 August [click to enlarge]

Daily composites of Aqua MODIS true-color RGB images, from 30 July to 08 August [click to enlarge]

Suomi NPP VIIRS true-color RGB images from 04-09 August (below) include VIIRS-detected fire locations plotted in red. The 09 August image showed that smoke from the fire had drifted west-southwestward over the adjacent offshore waters of Davis Strait.

Daily composites of Suomi NPP VIIRS true-color RGB images, from 04-09 August, with fire detection points plotted in red [click to enlarge]

Daily composites of Suomi NPP VIIRS true-color RGB images, from 04-09 August, with fire detection points plotted in red [click to enlarge]

===== 12 August Update =====

Landsat-8 OLI false-color images on 03, 05 and 12 August [click to enlarge]

Landsat-8 OLI false-color images on 03, 05 and 12 August [click to enlarge]

Another overpass of Landsat-8 on 12 August provided a glimpse of the fire burn scar, which appeared as a darker hue of reddish-brown. Note that the fire had burned eastward to the coast, during a day when stronger westerly winds prevailed.

Related sites:

NASA Earth Observatory

NPR

ESA Space in Images

AGU EOS

 

Cold temperatures in Alaska

January 19th, 2017 |

NOAA-18 AVHRR Infrared Window (10.8 µm) image, with surface air temperatures and corresponding station identifications [click to enlarge]

NOAA-18 AVHRR Infrared Window (10.8 µm) image, with surface air temperatures and corresponding station identifications [click to enlarge]

A NOAA-18 AVHRR Infrared Window (10.8 µm) image (above) showed the signature of cold air (violet colors) settling into river valleys and other low-elevation terrain areas across the cloud-free interior of Alaska at 1916 UTC (10:16 am local time) on 18 January 2017. Note that there was a layer of clouds (warmer cyan colors) over much of the North Slope of Alaska; these clouds were acting to limit strong surface radiational cooling, with resulting surface air temperatures only as cold as the -20s F. This AVHRR image was about 1 hour before the low temperature at Fairbanks International Airport (PAFA) dropped to -51ºF (-46ºC) — the first low of -50ºF or colder at that location since 31 December 1999 (-53ºF). While these were certainly cold temperatures, in general most were several degrees warmer than the daily record lows for 18 January:

NOAA-18 AVHRR Infrared Window (10.8 µm) image centered on Bettles (PABT), with surface air temperatures and corresponding station identifications [click to enlarge]

NOAA-18 AVHRR Infrared Window (10.8 µm) image centered on Bettles (PABT), with surface air temperatures and corresponding station identifications [click to enlarge]

Closer views centered on Bettles (above) and on Tanana (below) further highlighted the influence of terrain on the pattern of surface infrared brightness temperatures.

NOAA-18 AVHRR Infrared Window (10.8 µm) image centered on Tanana (PATA), with surface air temperatures and corresponding station identifications [click to enlarge]

NOAA-18 AVHRR Infrared Window (10.8 µm) image centered on Tanana (PATA), with surface air temperatures and corresponding station identifications [click to enlarge]

A comparison of re-mapped 1-km resolution NOAA-18 and “4-km” resolution GOES-15 (GOES-West) Infrared Window imagery (below) demonstrated the spatial resolution advantage of “Low Earth Orbit” (Polar-orbiting) satellites over Geostationary satellites, especially for high-latitude regions such as Alaska. As this plot shows, the true spatial resolution of a “4-km” GOES-15 Infrared image pixel over the interior of Alaska — where that satellite’s viewing angle or “zenith angle” from the Equator is about 74 degrees — is actually closer to 16 km. For the “2-km” Infrared imagery that will be provided by the GOES-R series ABI instrument, the spatial resolution over the interior of Alaska will be closer to 8 km.

NOAA-18 vs GOES-15 Infrared Window images [click to enlarge]

NOAA-18 vs GOES-15 Infrared Window images [click to enlarge]

=================================================================

NOAA-19 AVHRR Infrared Window (10.8 µm) image, with surface air temperatures and corresponding station identifications [click to enlarge]

NOAA-19 AVHRR Infrared Window (10.8 µm) image, with surface air temperatures and corresponding station identifications [click to enlarge]

The cold continued across much of Alaska on 19 January, as seen on a NOAA-19 AVHRR Infrared Window (10.8 µm) image at 1519 UTC or 4:19 am local time (above). However with a lack of cloud cover over the central portion of the North Slope, surface air temperatures were much colder (in the -40s F) compared to the -20s F that were seen there on the previous day.

NOAA-19 AVHRR Infrared Window (10.8 µm) image centered on Bettles (PABT), with surface air temperatures and corresponding station identifications [click to enlarge

NOAA-19 AVHRR Infrared Window (10.8 µm) image centered on Bettles (PABT), with surface air temperatures and corresponding station identifications [click to enlarge]

As was shown on the previous day, closer views centered on Bettles (above) and on Tanana (below) further highlighted the influence of terrain on the pattern of surface infrared brightness temperatures. On this day a layer of clouds (highlighted by the warmer cyan colors) covered the far eastern portion of the Tanana image below — note that surface temperatures in the Fairbanks area beneath these clouds were only as cold as the -30s F. Farther to the west, which remained cloud-free, the minimum temperature at Tanana was -59ºF.

NOAA-19 AVHRR Infrared Window (10.8 µm) images centered on Tanana (PATA), with surface air temperatures and corresponding station identifications [click to enlarge]

NOAA-19 AVHRR Infrared Window (10.8 µm) images centered on Tanana (PATA), with surface air temperatures and corresponding station identifications [click to enlarge]

Time series plots of surface weather conditions at Fairbanks, Tanana and Bettles during the 18-19 January period are shown below. Note that the surface visibility was periodically restricted 1 statute mile or less, due to ice fog, at all 3 locations.

Surface weather conditions at Fairbanks [click to enlarge]

Surface weather conditions at Fairbanks [click to enlarge]

Surface weather conditions at Tanana [click to enlarge]

Surface weather conditions at Tanana [click to enlarge]

Surface weather conditions at Bettles [click to enlarge]

Surface weather conditions at Bettles [click to enlarge]