Elevated NO2 signatures over the Northeast US

July 19th, 2019 |

TROPOMI NO2 concentration [click to enlarge]

TROPOMI NO2 concentration, courtesy of Bob Carp, SSEC [click to enlarge]

High temperatures (along with high dewpoints) prompted the issuance of Excessive Heat Warnings across much of the Northeast US on 19 July 2019. Under such conditions, surface NO2 concentrations in densely-populated urban areas often become elevated (primarily driven by emissions from motor vehicle exhaust, along with secondary sources such as coal-fired power plants and manufacturing / food processing industrial sources) — the high temperatures accelerate chemical reactions that form pollutants. The TROPOMI instrument detected plumes of elevated NO2 extending downwind (to the northeast) of major cities such as Philadelphia, New York City and Boston (above). The data are displayed using McIDAS-V.

A closer view centered on New York City is shown below.

TROPOMI NO2 concentration [click to enlarge]

TROPOMI NO2 concentration, courtesy of Bob Carp, SSEC [click to enlarge]

The Aqua MODIS Land Surface Temperature product around that time (below) revealed LST values in the 100-110ºF range across the New York City and Boston areas, where the daily maximum surface air temperatures were 95ºF and 93ªF, respectively.

Aqua MODIS Land Surface Temperature, with plots of daily maximum surface air temperatures [click to enlarge]

Aqua MODIS Land Surface Temperature, with plots of daily maximum surface air temperatures [click to enlarge]

Tropical Storm Barry

July 11th, 2019 |

GOES-16 "Red" Visible (0.64 µm) and "Clean" Infrared Window (10.35 µm) images, with plots of buoy and ship reports [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images, with plots of buoy and ship reports [click to play MP4 animation]

Tropical Storm Barry formed in the far northern Gulf of Mexico on 11 July 2019 — 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) displayed increasing convection associated with the tropical cyclone. The coldest cloud-top infrared brightness temperatures were -86ºC.

As was seen in an animation of GOES-16 Infrared imagery from the CIMSS Tropical Cyclones site (below), Barry was in an environment of low deep-layer wind shear — a factor that was favorable for further intensification.

GOES-16 Infrared (11.2 µm) images, with contours of deep-layer wind shear [click to enlarge]

GOES-16 Infrared (11.2 µm) images, with contours of deep-layer wind shear [click to enlarge]

===== 12 July Update =====

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute GOES-16 Visible images (above) revealed a mesovortex that was rotating counter-clockwise around the low-level circulation center of Barry, which was approaching the coast of Louisiana on 12 July. Note that the METAR site located immediately east of the mesovortex around 17 UTC — KMDJ, Mississippi Canyon Oil Platform — had a wind gust of 73 knots or 84 mph around that time (and later had a wind gust to 90 mph at 2135 UTC or 4:35 PM CDT)

The corresponding GOES-16 Infrared images (below) showed that deep convection remained to the south of the center of Barry.

 GOES-16 "Clean" Infrared Window (10.35 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images [click to play animation | MP4]

===== 17 July Update =====

Aqua MODIS Sea Surface Temperature product [click to enlarge]

Aqua MODIS Sea Surface Temperature product on 09 July [click to enlarge]

An Aqua MODIS Sea Surface Temperature image 2 days prior to the formation of Tropical Storm Barry (above) showed SST values in the upper 80s to low 90s F (darker shades of orange to red) in the northern Gulf of Mexico just south of Louisiana.

8 days later, a Terra MODIS SST image (below) revealed values predominantly in the lower to middle 80s F (green to yellow enhancement) — the slow movement of Barry as it eventually reached hurricane intensity just prior to landfall induced an upwelling of cooler sub-surface water over that area.

Terra MODIS Sea Surface Temperature product on 17 July [click to enlarge]

Terra MODIS Sea Surface Temperature product on 17 July [click to enlarge]

Eruption of the Raikoke volcano in the Kuril Islands

June 21st, 2019 |

Himawari-8 False Color RGB images [click to play animation | MP4]

Himawari-8 False Color RGB images [click to play animation | MP4]

For the first time since 1924, a major eruption of the Raikoke volcano occurred around 1800 UTC on 21 June 2019. Himawari-8 False Color Red-Green-Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed — via the brighter yellow areas — that a large portion of the volcanic plume was rich in both ash and sulfur dioxide (SO2). The Tokyo VAAC estimated the maximum ash height to be 43,000 feet (~13 km) above ground level — and CALIPSO CALIOP data indicated a maximum ash height around 12 km shortly after 02 UTC on 22 June (between 45-50º N latitude and 159-161º E longitude).

A comparison of an Aqua MODIS False Color RGB image with the corresponding Ash Height, Ash Loading and Ash Effective Radius retrieved products at 0310 UTC on 22 June (below) indicated maximum ash height values of 18-20 km (black pixels) immediately downwind of the eruption site. Maximum Himawari-8 Ash Height values were in the 16-18 km range.

Aqua MODIS False Color RGB, Ash Height, Ash Loading and Ash Effective Radius at 0310 UTC on 22 June [click to enlarge]

Aqua MODIS False Color RGB image with Ash Height, Ash Loading and Ash Effective Radius retrieved products [click to enlarge]

In a comparison of Himawari-8 Upper-level (6.2 µm), Mid-level (6.9 µm) and Low-level (7.3 µm) Water Vapor images (below), since the 7.3 µm spectral band is also sensitive to SO2 absorption, those images showed a good signature of the leading filament of volcanic SO2 as it was transported east-southeastward over the North Pacific Ocean.

Water Vapor images from Himawari-8: Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm, bottom) [click to play animation | MP4]

Water Vapor images from Himawari-8: Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm, bottom) [click to play animation | MP4]

Similarly, the GOES–17 (GOES-West) Low-level Water Vapor (7.3 µm) images also showed the filament of volcanic SO2 that was being drawn into the circulation of a Gale Force Low south of the Aleutian Islands. As a result, the Anchorage VAAC issued aviation Volcanic Ash Advisories that covered large areas of the North Pacific Ocean and southern Bering Sea; they continued to estimate the maximum ash height to be 43,000 feet. Around 16 UTC on 22 June, CALPSO CALIOP data sampled a small portion of the ash at an altitude near 17 km (between 45-50º N latitude, 155-157º W longitude).

Water Vapor images from GOES-17: Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm, bottom) [click to play animation | MP4]

Water Vapor images from GOES-17: Upper-level (6.2 µm, top), Mid-level (6.9 µm, middle) and Low-level (7.3 µm, bottom) [click to play animation | MP4]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP as viewed using RealEarth are shown below at approximately 01 UTC, 02 UTC and 03 UTC on 22 June. The combination of True Color and Infrared imagery indicated that volcanic ash was present a multiple altitudes.

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP at 01, 02 and 03 UTC on 22 June [click to enlarge]

Due to the highly-oblique satellite viewing angle of GOES-17, multiple Raikoke eruption pulses of significant vertical extent were clearly evident in GOES-17 “Red” Visible (0.64 µm) images (below).

GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

A somewhat less oblique view from the west was provided by the NSMC FY-2G satellite (below).

NSMC FY-2G Visible (0.73 µm) images [click to play animation | MP4]

NSMC FY-2G Visible (0.73 µm) images [click to play animation | MP4]

Himawari-8 “Red” Visible (0.64 µm) images (below) provided another interesting view of the multiple eruption pulses — and since the eruption began around 5 AM local time, long early morning shadows were cast by the initial bursts of tall volcanic clouds. A faster animation revealed shock waves propagating radially outward from the eruption site.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm) images [click to play animation | MP4]




Incidentally, an astronaut aboard the International Space Station took a photo of the volcanic cloud at 2246 UTC on 21 June — and the two Visible images that bracket that time (2240 and 2250 UTC) from GOES-17 and Himawari-8 are shown below.

Photo taken by an astronaut on the International Space Station [click to enlarge]

Photo taken by an astronaut on the International Space Station at 2246 UTC [click to enlarge]

GOES-17 Visible (0.64 µm) images at 2240 and 2250 UTC {click to enlarge]

GOES-17 Visible (0.64 µm) images at 2240 and 2250 UTC {click to enlarge]

Himawari-8 Visible (0.64 µm) images at 2240 and 2250 UTC {click to enlarge]

Himawari-8 Visible (0.64 µm) images at 2240 and 2250 UTC {click to enlarge]

===== 23 June Update =====

Himawari-8 False Color RGB images [click to play MP4 animation]

Himawari-8 False Color RGB images [click to play MP4 animation]

A 2-day animation of 10-minute Himawari-8 False Color images (above) showed the ash- and SO2-rich volcanic plume (brighter shades of yellow) eventually being transported northeastward across the western Aleutian Islands and circulating cyclonically over the Bering Sea. Similarly, this volcanic cloud transport was also seen in the corresponding GOES-17 False Color imagery.

===== 24 June Update =====

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB imagery (above) continued to show a signature of the volcanic cloud (brighter shades of yellow) from the Raikoke eruption over a large portion of the Bering Sea on 24 June. Volcanic ash advisories were issued for flight altitudes as high as 40,000 feet — and a pilot report of SO2 over the Bering Sea at 47,000 feet was received at 1822 UTC (below).

GOES-17 SO2 RGB, Split Clout Top Phase (11.2-8.4 µm) and Dust RGB images, with a pilot report of SO2 [click to enlarge]

GOES-17 SO2 RGB, Split Clout Top Phase (11.2-8.4 µm) and Dust RGB images, with a pilot report of SO2 [click to enlarge]

===== 25 June Update =====

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB images (above) showed the persistent signature of the SO2-rich volcanic cloud as much of it remained within the circulation of a quasi-stationary low pressure system in the Bering Sea.

An interesting Pilot Report north of the Aleutians at 36,000 feet (below) noted thin grey-colored layers below the altitude of the aircraft. GOES-17 Air Mass RGB images showed a subtle brown/tan plume — could this have been a thin filament of ash from the Raikoke eruption that was drawn into the circulation of the Bering Sea low?

GOES-17 SO2 RGB, Air Mass RGB, Dust RGB and Split Cloud Top Phase (11.2-8.4 µm) images, with a 2008 UTC Pilot Report [click to enlarge]

GOES-17 SO2 RGB, Air Mass RGB, Dust RGB and Split Cloud Top Phase (11.2-8.4 µm) images, with a 2008 UTC Pilot Report [click to enlarge]

Another Pilot Report farther to the west at 2119 UTC (below) was close to the southern edge of the GOES-17 SO2 signatures, but no sulphur odor was reported; however, they did note the presence of an apparent ash layer south of Shemya in the western Aleutian Islands.

GOES-17 SO2 RGB and Split Cloud Top Phase (11.2-8.4 µm) images, with a 2119 UTC Pilot Report [click to enlarge]

GOES-17 SO2 RGB and Split Cloud Top Phase (11.2-8.4 µm) images, with a 2119 UTC Pilot Report [click to enlarge]

Large-scale blowing dust event

April 10th, 2019 |

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

Strong winds — gusting as high as 77 mph in New Mexico and 88 mph in Texas — associated with a rapidly-intensifying midlatitude cyclone generated large plumes of blowing dust (originating from southeastern Arizona,southern New Mexico, northern Mexico and western Texas) on 10 April 2019. GOES-16 (GOES-East) Split Window (10.3-12.3 µm) images (above) helped to highlight the areas of blowing dust, which initially developed along and behind a cold front after 15 UTC.

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface winds and gusts [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface wind barbs and gusts [click to play animation | MP4]

GOES-16 Split Window images with hourly plots of surface wind barbs and gusts (above) showed the distribution of strong winds across the region, while plots of the surface visibility (below) showed decreases to 1/4 mile at Deming, New Mexico, 1/2 mile at Lubbock, Texas and 4 miles at Altus, Oklahoma.

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface visibility [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images, with hourly plots of surface visibility [click to play animation | MP4]

GOES-16 True Color Red-Green-Blue (RGB) images (below; courtesy of Rick Kohrs, SSEC) depicted the blowing dust as shades of tan to light brown. Willcox Playa was the source of the dust plume coming from southeastern Arizona. Note that the dust plume emanating from White Sands, New Mexico was lighter in appearance compared to the other tan/brown-colored areas of blowing dust — this is due to the white gypsum sand that comprises the surface of White Sands National Monument.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

250-meter resolution MODIS True Color RGB images from the MODIS Today site (below) provided a more detailed view of the plume streaming northeastward from its White Sands source. On the later Aqua image, dense tan-colored areas of blowing dust had developed below the thin higher-altitude veil of brighter gypsum aerosols that had earlier been lofted from White Sands.

MODIS True Color RGB images from Terra and Aqua [click to enlarge]

MODIS True Color RGB images from Terra and Aqua [click to enlarge]

A NOAA-20 True Color RGB image viewed using RealEarth is shown below. 19 UTC surface observations at 3 sites near White Sands included Las Cruces KLRU (visibility 3 miles, wind gusting to 46 knots), Alamogordo KALM (visibility 3 miles, wind gusting to 43 knots) and Ruidoso KSRR (visibility 5 miles, wind gusting to 55 knots). The strong winds and dense areas of blowing dust reducing surface visibility not only impacted ground transportation but also posed a hazard to aviation.

NOAA-20 True Color RGB image at 1928 UTC [click to enlarge]

NOAA-20 True Color RGB image at 1928 UTC [click to enlarge]

===== 11 April Update =====

In a larger-scale view of GOES-16 Split Window images (below), the yellow dust signature could be followed during the subsequent overnight hours and into the following day on 11 April, as the aerosols were being transported northeastward across the Upper Midwest. There were widespread reports and photos of dust residue on vehicles and tan/brown-colored snow in parts of Nebraska, Iowa, Minnesota and Wisconsin.

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

IDEA forward trajectories (below) — initialized from a cluster of elevated Aura OMI Aerosol Index points over Mexico, New Mexico and Texas — passed directly over areas of model-derived precipitation across the Upper Midwest, providing further support of precipitation scavenging of dust aerosols. Interestingly, a similar event of long range dust transport occurred on 10-11 April 2008.

IDEA forward trajectories initialized from a cluster of elevated Aqua MODIS Aerosol Optical Depth points over NM/TX [click to play animation]

IDEA forward trajectories initialized from a cluster of elevated Aqua MODIS Aerosol Optical Depth points over NM/TX [click to play animation]

HYSPLIT model 24-hour forward trajectories initialized at 3 locations — El Paso, Lubbock and Amarillo in Texas — showed a few of the likely dust transport pathways toward the Upper Midwest at 3 different levels (below).

HYSPLIT model forward trajectories initialized at El Paso, Lubbock and Amarillo, Texas [click to enlarge]

HYSPLIT model 24-hour forward trajectories initialized at El Paso, Lubbock and Amarillo, Texas [click to enlarge]

GOES-16 True Color RGB images from the AOS site (below) showed that some clouds across the Upper Midwest exhibited a subtle light brown hue at times.

GOES-16 True Color RGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

===== 12 April Update =====

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window (10.3-12.3 µm) images (above) showed that the yellow signature of dust aerosols aloft had wrapped all the way around the southern and eastern sectors of the occluded low on 12 April.

Ground-based lidar at the University of Wisconsin – Madison confirmed the presence of elevated levels of aerosol loading between the surface and 6 km.

Lidar aerosol class [click to enlarge]

Lidar aerosol class [click to enlarge]