GOES-14 SRSO-R: rapidly-intensifying storm off the US East Coast

February 7th, 2016

GOES-14 Visible (0.63 µm) and Water Vapor (6.5 µm) images, with surface weather symbols plotted [click to play animation]

GOES-14 Visible (0.63 µm) and Water Vapor (6.5 µm) images, with surface weather symbols plotted [click to play animation]

One-minute interval Super Rapid Scan Operations for GOES-R (SRSO-R) Visible (0.63 µm) and Water Vapor (6.5 µm) images (above) showed the development and rapid intensification (surface analyses) of a mid-latitude cyclone just off the East Coast of the US on 07 February 2016. The storm produced moderate to heavy rainfall across eastern North Carolina, along with some light to moderate snow and sleet at a few locations.

A closer view of the GOES-14 Visible (0.63 µm) images (below; also available as a large 85 Mbyte animated GIF) revealed the rapid motion of low-altitude clouds when gaps in the high-altitude clouds were present. Very strong winds were caused by the strong pressure gradient, with gusts as high as 72 mph, and a large Royal Caribbean cruise ship experienced some damage due to the winds (media report 1 | media report 2). The corresponding GOES-14 Water Vapor (6.5 µm) images, which also extend further in time after dark, are available here.

GOES-14 Visible (0.63 µm) images, with surface weather symbols plotted [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images, with surface weather symbols plotted [click to play MP4 animation]

A comparison of 1-km resolution POES AVHRR Visible (0.86 µm) and Infrared (12.0 µm) images at 2202 UTC (below) displayed greater detail of the classic “cusp” signature of high clouds, indicative of an intensifying surface cyclone (VISIT lesson). At the time, wind gusts to 60 knots were seen at one the buoys off the coast of North Carolina.

POES AVHRR Visible (0.86 µm) and Infrared (12.0 µm) images [click to enlarge]

POES AVHRR Visible (0.86 µm) and Infrared (12.0 µm) images [click to enlarge]

At 0137 UTC, a closed-off low level circulation center could be seen on a POES AVHRR Infrared (12.0 µm) image (below).

POES AVHRR Infrared (12.0 µm) image [cluck to enlarge]

POES AVHRR Infrared (12.0 µm) image [cluck to enlarge]

Additional information on this storm can be found on the Satellite Liaison Blog.

Leave a Reply