This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Explosion in Tianjin, China

A storage facility in Tianjin, China exploded shortly after 1500 UTC on 12 August 2015 (media story). Himawari-8, MTSAT-2 and COMS-1 all viewed the explosion that generated a strong thermal signature in the shortwave infrared band (3.75 µm – 3.9 µm). The animation above shows the benefit of Himawari-8’s speedier scanning... Read More

Himawari-8 (3.9 µm, top), MTSAT-2 (3.75 µm, middle) and COMS-1 (3.75 µm, bottom) shortwave infrared imagery, times as indicated [click to animate]

Himawari-8 (3.9 µm, top), MTSAT-2 (3.75 µm, middle) and COMS-1 (3.75 µm, bottom) shortwave infrared imagery, times as indicated [click to animate]

A storage facility in Tianjin, China exploded shortly after 1500 UTC on 12 August 2015 (media story). Himawari-8, MTSAT-2 and COMS-1 all viewed the explosion that generated a strong thermal signature in the shortwave infrared band (3.75 µm – 3.9 µm). The animation above shows the benefit of Himawari-8’s speedier scanning mode: the smoke clouds that emanate from the explosion are easily traced, and data gaps when Full Disk images are being scanned (around 1800 UTC) are not present. Superior spatial resolution of Himawari-8 infrared channels (2-km, compared to 4-km for COMS-1 and MTSAT-2) means hotter brightness temperatures are sensed as well. The fact that smoke resulting from the explosion was seen spreading northeastward, southeastward, and southwestward was due to a marked shift in wind direction with height, as seen in the nearby Beijing rawinsonde report.

The explosion exhibted a signal in other Himawari-8 AHI bands as well. Band 5, at 1.6 µm and Band 6, at 2.3 µm are shown below (animations courtesy of William Straka, CIMSS); Similar animations are available for 3.9 µm, 6.2 µm (very faintly visible in this upper tropospheric water vapor channel), 7.0 µm, 7.3 µm and 8.6 µm and 10.35 µm.

Himawari-8 1.6 µm near-Infrared Imagery, times as indicated [click to enlarge]

Himawari-8 1.6 µm near-Infrared Imagery, times as indicated [click to animate]

Himawari-8 1.6 µm near-Infrared Imagery, times as indicated [click to animate]

Himawari-8 1.6 µm near-Infrared Imagery, times as indicated [click to animate]

A view of Himawari-8 shortwave IR imagery using the SSEC RealEarth web map server is shown below. In addition, an animation of Himawari-8 true-color images showing the dark smoke plume can be seen here.

Himawari-8 shortwave IR (3.9 um) images, displayed using RealEarth [click to enlarge]

Himawari-8 shortwave IR (3.9 um) images, displayed using RealEarth [click to enlarge]


========================== Added 14 August 2015 ===================

Suomi NPP VIIRS Day/Night Band (0.70 um) visible images on 9 August (before explosion) and 13 August (after explosion) [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.70 um) visible images on 9 August (before explosion) and 13 August (after explosion) [click to enlarge]

The Suomi NPP satellite overflew Tianjin before and after the explosion; VIIRS Day/Night Band images afford views that suggest power outages around the explosion site.

View only this post Read Less

GOES-14 SRSO-R: Wildfire in southern Washington

1-minute interval GOES-14 SRSO-R visible (0.63 µm) images (above; click image to play animation) revealed the pulsing nature of the large Cougar Creek wildfire complex burning in southern Washington (not far southwest of Yakima) on 12 August 2015. The MP4 movie file is also available as a very large (128 Mbyte)... Read More

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

1-minute interval GOES-14 SRSO-R visible (0.63 µm) images (above; click image to play animation) revealed the pulsing nature of the large Cougar Creek wildfire complex burning in southern Washington (not far southwest of Yakima) on 12 August 2015. The MP4 movie file is also available as a very large (128 Mbyte) animated GIF. The second fire blow-up that began around 1700 UTC apparently produced a pyrocumulonimbus cloud, with cloud-top IR Brightness Temperature (BT) values cooling past -40º C. Large amounts of smoke were transported northward and then northeastward away from the fire source region.

During the preceding overnight hours, a comparison of  1003 UTC Suomi  NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images (below) showed a very large shortwave IR fire “hot spot” (yellow to red to black pixels), with the large fire glowing very brightly on the Day/Night Band image; the coldest IR BT value of the cloud streaming northward from the fire was -53º C.

Suomi NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images [click to enlarge]

View only this post Read Less

GOES-14 SRSO-R: Thunderstorms over the ArkLaMiss and Mid-Atlantic regions

A nighttime mesoscale convective system (MCS) developed near the Arkansas/Louisiana/Mississippi border region after about 0700 UTC (2:00 AM local time) on 11 August 2015, and began to move southeastward. A comparison of 4-km resolution GOES-13 Infrared (10.7 µm) and 375-meter resolution Suomi NPP VIIRS Infrared (11.45 µm) images (above) showed... Read More

GOES-13 Infrared (10.7 µm) and Suomi NPP VIIRS Infrared (11.45 µm) images [click to enlarge]

GOES-13 Infrared (10.7 µm) and Suomi NPP VIIRS Infrared (11.45 µm) images [click to enlarge]

A nighttime mesoscale convective system (MCS) developed near the Arkansas/Louisiana/Mississippi border region after about 0700 UTC (2:00 AM local time) on 11 August 2015, and began to move southeastward. A comparison of 4-km resolution GOES-13 Infrared (10.7 µm) and 375-meter resolution Suomi NPP VIIRS Infrared (11.45 µm) images (above) showed the MCS around 0845 UTC, and highlighted the two advantages of polar-orbiter vs geostationary satellite imagery: (1) higher spatial resolution, for a more accurate assessment of the cloud-top IR Brightness Temperatures (the coldest GOES-13 IR BT was -73º C, while the coldest VIIRS IR BT was -83º C), and (2) minimal parallax error, for a more accurate geo-location of features such as thunderstorm overshooting tops (note how the storm appeared to be located farther to the northwest on the GOES image, centered over far southeastern Arkansas).

With the arrival of daylight the following morning, 1-minute interval GOES-14 SRSO-R visible (0.63 µm) images (below) revealed the presence of numerous short-lived overshooting tops which were penetrating the cirrus canopy of the persisting MCS. The formation of a well-defined outflow boundary was also seen, which continued to move southward during the late morning hours. The MP4 movie file is also available as a very large (73 Mbyte) animated GIF. A GOES-14 1-minute-image IR (10.7 µm) animation which shows the initial development and subsequent motion of the MCS can be seen here.

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

GOES-14 1-minute visible images (below) also showed the development of multi-cellular thunderstorms over parts of the Mid-Atlantic states, focused along trough axes ahead of an approaching cold frontal boundary — many of these thunderstorms produced damaging winds (SPC Storm Reports). The MP4 movie file is also available as a very large (102 Mbyte) animated GIF.

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

View only this post Read Less

GOES-14 in SRSO-R Mode

GOES-14 is again in SRSO-R (Super Rapid Scan Operations for GOES-R) mode, affording the opportunity for 1-minute imagery over select regions of the United States. Information on the daily activity is available here; SRSO-R will continue through 21 August and serves as a reminder of the kind of routine scanning... Read More

GOES-14 Visible (0.62 µm) Imagery  [click to play animation]

GOES-14 Visible (0.62 µm) Imagery [click to play animation]

GOES-14 is again in SRSO-R (Super Rapid Scan Operations for GOES-R) mode, affording the opportunity for 1-minute imagery over select regions of the United States. Information on the daily activity is available here; SRSO-R will continue through 21 August and serves as a reminder of the kind of routine scanning abilities that will be available when GOES-R is operational.

The images above, from the morning of 10 August, show a variety of features (thunderstorms over the Piedmont of South Carolina, North Carolina and Virginia, wave clouds over the high terrain of North Carolina, river valley fog in northern West Virginia and western Pennsylvania, fog in southern Vermont, etc.). High temporal resolution allows a better understanding of the cloud behavior.

As solar heating increased toward mid-day and the atmosphere became more unstable, clusters of convection developed over parts of the Great Lakes region as seen in the MP4 animation below. One of the thunderstorms (which developed in eastern Wisconsin ahead of an approaching cold front) produced 1.75-inch diameter hail, and a brief EF0 tornado (SPC storm reports); not far to the south, a thunderstorm wind gust of 44 mph and 1.10 inches of rainfall in 30 minutes occurred at Milwaukee International Airport (Local Storm Reports). The MP4 movie file is also available as a very large (197 Mbyte) animated GIF.

GOES-14 Visible (0.63 um) images [click to play animation]

GOES-14 Visible (0.63 um) images [click to play animation]

Over the Southeast US, widespread damaging wind reports resulted from strong thunderstorms forming ahead of a Mesoscale Convective Vortex that was moving southeastward across the Tennessee River Valley region (SPC Mesoscale Discussion). The GOES-14 visible images below vividly displayed the complex nature of the convection associated with this feature. The MP4 movie file is also available as a very large (87 Mbyte) animated GIF.

GOES-14 Visible (0.63 µm) images [click to play animation]

GOES-14 Visible (0.63 µm) images [click to play animation]

In the Northeast US, the GOES-14 visible images below showed convective development which was being aided by boundary layer convergence along a weak trough axis (surface analysis). 1.00-inch diameter hail was reported at Franklin in Upstate New York at 2035 UTC, and damaging winds were reported in Victor, New York at 2002 UTC and then again in Lyons, New York at 2129 UTC. The MP4 movie file is also available as a very large (59 Mbyte) animated GIF.

GOES-14 Visible (0.63 µm) images [click to play animation]

GOES-14 Visible (0.63 µm) images [click to play animation]

To access realtime GOES-14 1-minute data directly, click here or here.

One of the things SRSO-R supports is the 2015 Summer Experiment at the Aviation Weather Center. For more information on that experiment, click here.

View only this post Read Less