This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Supermoon VIIRS Day/Night Band imagery

The only Supermoon of 2017 occurred on 03 December — and a composite of Suomi NPP VIIRS Day/Night Band (0.7 µm) swaths viewed using RealEarth (above) demonstrated the “visible image at night” capability of that spectral band. A VIIRS instrument is also part of the payload on recently-launched JPSS-1/NOAA-20.A few... Read More

Composite of Suomi NPP VIIRS Day/Night Band swaths [click to enlarge]

Composite of Suomi NPP VIIRS Day/Night Band swaths [click to enlarge]

The only Supermoon of 2017 occurred on 03 December — and a composite of Suomi NPP VIIRS Day/Night Band (0.7 µm) swaths viewed using RealEarth (above) demonstrated the “visible image at night” capability of that spectral band. A VIIRS instrument is also part of the payload on recently-launched JPSS-1/NOAA-20.

A few examples providing closer looks using VIIRS Day/Night Band (DNB) imagery are shown below, beginning with the western portion of an Atlantic storm that had been producing Gale Force winds during the previous 6-12 hours.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image centered over the western Atlantic [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image centered over the western Atlantic [click to enlarge]

A toggle between Day/Night Band (0.7 µm) and Fog/stratus Infrared Brightness Temperature Difference (11.45 µm – 3.74 µm) images, centered over the Southeast US (below) showed widespread areas of fog and/or stratus The brighter fog/stratus features were generally brighter on the DNB image..

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Fog/stratus Infrared Brightness Temperature Difference (11.45 µm - 3.74 µm) images, centered over the Southeast US [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Fog/stratus Infrared Brightness Temperature Difference (11.45 µm – 3.74 µm) images, centered over the Southeast US [click to enlarge]

Another toggle between DNB and Fog/stratus Infrared Brightness Temperature Difference images, this time centered over Minnesota, Wisconsin and the UP of Michigan (below) revealed snow cover that was much below average for the date — especially across the UP of Michigan.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Fog/stratus Infrared Brightness Temperature Difference (11.45 µm - 3.74 µm) images, centered over Minnesota and the UP of Michigan [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Fog/stratus Infrared Brightness Temperature Difference (11.45 µm – 3.74 µm) images, centered over Minnesota, Wisconsin and the UP of Michigan [click to enlarge]

Finally, a toggle between DNB images from consecutive overpass times (0935 and 1116 UTC), showing small clusters of rain showers moving inland along the coast of Oregon and far northern California (below). Because of the wide scan swath of the VIIRS instrument (2330 km), there are times when the same area will be imaged during 2 consecutive overpasses.

Suomi NPP VIIRS Day/Night Band images, centered off the coast of Oregon [click to enlarge]

Suomi NPP VIIRS Day/Night Band images, centered off the coast of Oregon [click to enlarge]

View only this post Read Less

GOES-16 is no longer transmitting ABI data

In preparation for its move from 89.5º W Longitude to the operational GOES-East position at 75.2º W Longitude, GOES-16 Instruments — the ABI, the GLM, and others — have been placed in ‘safe mode.’  In that mode, the instruments do not scan or transmit data.  This occurred shortly after the... Read More

16-panel image of all GOES-16 ABI Bands, 1332 UTC on 30 November 2017 (Click to enlarge)

In preparation for its move from 89.5º W Longitude to the operational GOES-East position at 75.2º W Longitude, GOES-16 Instruments — the ABI, the GLM, and others — have been placed in ‘safe mode.’  In that mode, the instruments do not scan or transmit data.  This occurred shortly after the 1330 UTC Full Disk image, and the 1332 CONUS Image, shown above.  GOES-16 instrumentation will start scanning and transmitting again, sometime between 14 and 20 December.  In contrast to earlier GOES Satellites, GOES-R series satellites will not transmit data when they are shifting longitude.

Other examples of the final preliminary, non-operational GOES-16 ABI images are shown below: (1) Visible (0.64 µm) imagery centered over snow-covered Mount Washington, New Hampshire, (2) Full Disk Water Vapor (6.9 µm) imagery and (3) a closer view of Water Vapor (7.3 µm, 6.9 µm and 6.2 µm) images showing mountain waves over Wyoming and Colorado.

GOES-16 Visible (0.64 µm) images, centered on Mount Washington, New Hampshire (Click to animate)

GOES-16 Visible (0.64 µm) images, centered on Mount Washington, New Hampshire [click to animate]

GOES-16 Water Vapor (6.9 µm) images (Click to animate)

GOES-16 Water Vapor (6.9 µm) images [click to animate]

GOES-16 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation]

GOES-16 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to animate]

View only this post Read Less

Prescribed burn in Wisconsin

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed signatures associated with a prescribed burn in western Wisconsin on 28 November 2017. The Shortwave Infrared images revealed a warm thermal anomaly... Read More

GOES-16 Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-16 Visible (0.64 µm, left) and Shortwave Infrared (3.9 µm, right) images, with plots of hourly surface reports [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed signatures associated with a prescribed burn in western Wisconsin on 28 November 2017. The Shortwave Infrared images revealed a warm thermal anomaly or “hot spot” (dark black to yellow to red pixels) — and on the visible images, a thin smoke plume could be seen drifting southeastward from the fire source.

Early in the animation sequence, however, a band of cirrus cloud was moving over the fire — yet a faint thermal signature (darker gray to black pixels) could occasionally be seen on the Shortwave Infrared imagery. The cirrus cloud layer was thin enough to allow some of the heat energy emitted by the fire to pass through and reach the satellite detectors. Once the cirrus moved to the south, the fire’s hot spot became much more apparent.

A toggle between Terra MODIS Shortwave Infrared (3.7µm) and Infrared Window (11.0 µm) images at 1812 UTC (below) also showed a faint warm fire signature through the cirrus clouds — the cloud-top Infrared Window brightness temperature directly over the fire in northern Monroe County was -33ºC, while the warmest Shortwave Infrared brightness temperature of the subtle fire signature was +1ºC.

Terra MODIS Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images [click to enlarge]

As was seen on the GOES-16 imagery, after the band of cirrus moved south of the fire an Aqua MODIS Shortwave Infrared (3.7 µm) image at 1912 UTC (below) displayed a pronounced fire hot spot signature.

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

(Thanks to Dave Schmidt, NWS La Crosse, for bringing this case to our attention!)

View only this post Read Less

Lee-side cold frontal gravity wave

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *As a strong cold front (surface analyses) moved southward from Colorado and Nebraska across New Mexico, Texas and Oklahoma on 28 November 2017, the subtle curved arc signature of a lee-side cold frontal gravity wave could be seen on GOES-16 Lower-level... Read More

GOES-16 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, right) Water Vapor images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

As a strong cold front (surface analyses) moved southward from Colorado and Nebraska across New Mexico, Texas and Oklahoma on 28 November 2017, the subtle curved arc signature of a lee-side cold frontal gravity wave could be seen on GOES-16 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above).

Closer views of imagery from each of the 3 water vapor bands are shown below.

GOES-16 Upper-level (6.2 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Mid-level (6.9 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Mid-level (6.9 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm) images, with hourly surface wind barbs plotted in yellow [click to play MP4 animation]

View only this post Read Less