Strong jet stream over the North Pacific Ocean
* GOES-17 images shown here are preliminary and non-operational *
GOES-17 Mid-level Water Vapor (6.9 µm) images with an overlay of 250 hPa wind isotachs from the GFS90 model (above) showed a string of disturbances (surface analysis) along the axis of a 180-knot “Japan Jet” across the North Pacific Ocean on 02 January 2019.
GOES-17 Split Ozone (9.6 µm – 10.3 µm) Brightness Temperature Difference images (below) include an overlay of PV1.5 pressure (an indicator of the height of the “dynamic tropopause”) — they showed the difference between cold polar air having a low tropopause (shades of cyan to blue) north of the jet stream and warm tropical air having a much higher tropopause (shades of yellow). The Split Ozone BTD is the Green component of the Air Mass Red-Green-Blue (RGB) product.
Rawinsonde data also showed the significant difference in tropopause height between St. Paul Island, Alaska (pressure=314 hPa, height=8.1 km) in the polar air of the Bering Sea and Lihue, Hawai’i (pressure=82 hPa, height=17.9 km) in the tropical air of the central Pacific (below). GOES-17 Air Mass RGB images from the UW-AOS site (below) further illustrated the sharp contrast between the cold/dry polar air to the north and warm/moist tropical air to the south of the strong jet stream. The purple hues along the northwestern edge of the scan are a result of the “limb cooling” effect, as the satellite’s infrared detectors sense radiation from colder upper levels of the atmosphere at large viewing angles. In addition to the series of larger disturbances along the jet stream axis, there were also some smaller-scale storms apparent in the Bering Sea (surface analyses). Better detail of these high-latitude features could be seen using Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images separated by 10 hours (below). Regarding the strong Japan Jet, GOES-15 (GOES-West) Derived Motion Winds (source) tracked targets having velocities as high as 200 knots at 03 UTC (below).